找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Compressed Sensing & Sparse Filtering; Avishy Y. Carmi,Lyudmila Mihaylova,Simon J. Godsil Book 2014 Springer-Verlag Berlin Heidelberg 2014

[復(fù)制鏈接]
樓主: 存貨清單
21#
發(fā)表于 2025-3-25 05:09:23 | 只看該作者
22#
發(fā)表于 2025-3-25 07:56:44 | 只看該作者
Sub-Nyquist Sampling and Compressed Sensing in Cognitive Radio Networks,. As a key technology, spectrum sensing enables cognitive radios to find spectrum holes and improve spectral utilization efficiency. To exploit more spectral opportunities, wideband spectrum sensing approaches should be adopted to search multiple frequency bands at a time. However, wideband spectrum
23#
發(fā)表于 2025-3-25 12:32:51 | 只看該作者
24#
發(fā)表于 2025-3-25 17:07:23 | 只看該作者
25#
發(fā)表于 2025-3-25 21:32:01 | 只看該作者
26#
發(fā)表于 2025-3-26 04:04:10 | 只看該作者
27#
發(fā)表于 2025-3-26 04:26:39 | 只看該作者
28#
發(fā)表于 2025-3-26 08:30:56 | 只看該作者
,Estimation of Time-Varying Sparse Signals in?Sensor Networks,ch time interval, the fusion center transmits the predicted signal estimate and its corresponding error covariance to a selected subset of sensors. The selected sensors compute quantized innovations and transmit them to the fusion center. We consider the situation where the signal is sparse, i.e., a
29#
發(fā)表于 2025-3-26 15:45:39 | 只看該作者
Sparsity and Compressed Sensing in Mono-Static and Multi-Static Radar Imaging,Rs). We provide a brief overview of how sparsity-driven imaging has recently been used in various radar imaging scenarios. We then focus on the problem of imaging from undersampled data, and point to recent work on the exploitation of compressed sensing theory in the context of radar imaging. We con
30#
發(fā)表于 2025-3-26 20:44:25 | 只看該作者
Structured Sparse Bayesian Modelling for Audio Restoration,an example, a model to remove impulse and background noise from audio signals via their representation in time-frequency space using Gabor wavelets is presented. A number of prior models for the sparse structure of the signal in this space are introduced, including simple Bernoulli priors on each co
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 18:34
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大名县| 凤阳县| 玛纳斯县| 石渠县| 确山县| 屏山县| 大竹县| 镶黄旗| 周口市| 山阳县| 五寨县| 肇庆市| 镇坪县| 安多县| 南昌县| 右玉县| 凤山县| 高邑县| 德阳市| 江永县| 西贡区| 郎溪县| 治多县| 淮北市| 绥江县| 海林市| 商南县| 清苑县| 太和县| 政和县| 宜君县| 邢台市| 通榆县| 兴宁市| 石渠县| 德格县| 施秉县| 泸定县| 盐边县| 兴仁县| 聂拉木县|