找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complexity of Lattice Problems; A Cryptographic Pers Daniele Micciancio,Shafi Goldwasser Book 2002 Springer Science+Business Media New York

[復(fù)制鏈接]
樓主: 信賴
31#
發(fā)表于 2025-3-26 23:51:49 | 只看該作者
32#
發(fā)表于 2025-3-27 04:58:29 | 只看該作者
Book 2002relatively poor quality of the solution it gives in the worst case, allowed to devise polynomial time solutions to many classical problems in computer science. These include, solving integer programs in a fixed number of variables, factoring polynomials over the rationals, breaking knapsack based cr
33#
發(fā)表于 2025-3-27 07:26:39 | 只看該作者
0893-3405 n computer science. These include, solving integer programs in a fixed number of variables, factoring polynomials over the rationals, breaking knapsack based cr978-1-4613-5293-8978-1-4615-0897-7Series ISSN 0893-3405
34#
發(fā)表于 2025-3-27 10:42:27 | 只看該作者
Approximation Algorithms,l time algorithms to find approximately shortest nonzero vectors in a lattice, or lattice vectors approximately closest to a given target point. The approximation factor achieved is exponential in the rank of the lattice. In Section 1 we start with an algorithm to solve SVP in dimension 2. For the s
35#
發(fā)表于 2025-3-27 17:26:27 | 只看該作者
36#
發(fā)表于 2025-3-27 17:46:05 | 只看該作者
Shortest Vector Problem,to find the shortest nonzero vector in the lattice generated by . . In Chapter 3 we have already studied another important algorithmic problem on lattices: the closest vector problem (CVP). In CVP, in addition to the lattice basis ., one is given a target vector ., and the goal is to find the lattic
37#
發(fā)表于 2025-3-27 22:31:36 | 只看該作者
38#
發(fā)表于 2025-3-28 02:44:22 | 只看該作者
39#
發(fā)表于 2025-3-28 09:10:48 | 只看該作者
40#
發(fā)表于 2025-3-28 13:18:54 | 只看該作者
Cryptographic Functions,n cryptography is that of secret communication: two parties want to communicate with each other, and keep the conversation private, i.e., no one, other than the two legitimate parties, should be able to get any information about the messages being exchanged. This secrecy goal can be achieved if the
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 07:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
丹凤县| 垫江县| 南充市| 紫阳县| 邢台县| 石首市| 盈江县| 根河市| 六枝特区| 新巴尔虎右旗| 彰武县| 新龙县| 静宁县| 色达县| 子洲县| 门头沟区| 饶平县| 内丘县| 兰坪| 万年县| 桑日县| 定襄县| 普兰店市| 桓台县| 兴宁市| 九龙坡区| 区。| 洛隆县| 天津市| 墨脱县| 得荣县| 高要市| 彝良县| 江津市| 沾化县| 北碚区| 平远县| 乌拉特前旗| 汨罗市| 两当县| 金塔县|