找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complexity and Approximation; Combinatorial Optimi Giorgio Ausiello,Alberto Marchetti-Spaccamela,Vigg Textbook 1999 Springer-Verlag Berlin

[復制鏈接]
樓主: ED431
21#
發(fā)表于 2025-3-25 06:03:01 | 只看該作者
22#
發(fā)表于 2025-3-25 10:12:51 | 只看該作者
23#
發(fā)表于 2025-3-25 13:28:56 | 只看該作者
24#
發(fā)表于 2025-3-25 17:39:44 | 只看該作者
Heuristic methods,gorithms with a guaranteed behaviour, where such a guarantee refers both to the quality of the returned solution (in terms of either worst case or expected performance ratio) and to the running time (polynomial either in the worst or in the average case).
25#
發(fā)表于 2025-3-25 20:54:31 | 只看該作者
The Regime for Securities Regulation,ant to solve by computer may have quite varying characteristics. In general, we are able to express our problem in terms of some .? ., where I is the set of . and . is the set of .. As an alternative view, we can also consider a predicate .(x,y) which is true if and only if (x,y) ∈ .. If we want to
26#
發(fā)表于 2025-3-26 01:16:25 | 只看該作者
https://doi.org/10.1057/9781403981011unless P = N.. Therefore, if we want to solve an N.-hard optimiza-tion problem by means of an efficient (polynomial-time) algorithm, we have to accept the fact that the algorithm does not always return an optimal solution but rather an approximate one. In Chap. 2, we have seen that, in some cases, s
27#
發(fā)表于 2025-3-26 05:13:52 | 只看該作者
Paul Kingston,Marie-Joelle Zahartant factor. We also saw examples of N. problems for which no approximation algorithm exists (unless P=N.) and examples of N. problems for which an approximation algorithm but no approxima-tion scheme exists (unless P=N.). To deal with these two latter kinds of problem, in this chapter we will relax
28#
發(fā)表于 2025-3-26 11:45:15 | 只看該作者
J. David Alvis,Jason R. Jividen many problems arising in different areas: taking into account the scope of this book, however, we will limit ourselves to considering randomized approximation algorithms for N.-hard optimization problems.
29#
發(fā)表于 2025-3-26 16:12:51 | 只看該作者
30#
發(fā)表于 2025-3-26 19:09:24 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 00:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
通辽市| 金昌市| 庄浪县| 柯坪县| 湟中县| 九龙坡区| 利川市| 平远县| 长春市| 赤水市| 桦川县| 合江县| 阳江市| 屏东市| 铜梁县| 芜湖市| 鄱阳县| 岐山县| 江口县| 柘城县| 衡阳县| 松原市| 伊金霍洛旗| 邹平县| 昆山市| 内黄县| 乐至县| 漯河市| 云林县| 竹北市| 大方县| 邵东县| 博湖县| 成安县| 竹山县| 吴旗县| 南开区| 东辽县| 郓城县| 张家界市| 醴陵市|