找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Complexity Theory Retrospective; In Honor of Juris Ha Alan L. Selman Book 1990 Springer-Verlag New York Inc. 1990 Counting.algorithm.algori

[復(fù)制鏈接]
樓主: Spring
21#
發(fā)表于 2025-3-25 06:00:52 | 只看該作者
22#
發(fā)表于 2025-3-25 10:59:31 | 只看該作者
Introduction,I can begin no more eloquently than by quoting the master himself:
23#
發(fā)表于 2025-3-25 12:44:53 | 只看該作者
Juris Hartmanis: The Beginnings of Computational Complexity,areer.. This is a very appropriate tribute since complexity theory is now approximately 25 years old and Juris has been a prime mover in the field throughout its history. I was privileged to have worked with Hartmanis during the early period of his complexity research, and I am grateful for this opp
24#
發(fā)表于 2025-3-25 18:32:26 | 只看該作者
25#
發(fā)表于 2025-3-25 21:40:34 | 只看該作者
26#
發(fā)表于 2025-3-26 02:27:38 | 只看該作者
Describing Graphs: A First-Order Approach to Graph Canonization, unordered graphs?” We consider the languages .. consisting of first-order logic restricted to . variables and .. consisting of .. plus “counting quantifiers”. We give efficient canonization algorithms for graphs characterized by .. or ... It follows from known results that all trees and almost all
27#
發(fā)表于 2025-3-26 08:00:33 | 只看該作者
28#
發(fā)表于 2025-3-26 10:19:54 | 只看該作者
The Structure of Complete Degrees,s as diverse as combinatorics, logic, and operations research turn out to be NP-complete and thus computationally equivalent in the sense discussed in the next paragraph. PSPACE-completeness, NEXP-completeness, and completeness for other complexity classes have likewise been used to show commonaliti
29#
發(fā)表于 2025-3-26 16:29:35 | 只看該作者
30#
發(fā)表于 2025-3-26 17:19:53 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 01:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
政和县| 盐津县| 桃园市| 宁陕县| 容城县| 招远市| 新乡市| 榆林市| 那坡县| 崇仁县| 丹东市| 沈丘县| 光泽县| 吴江市| 榆林市| 葵青区| 耒阳市| 彝良县| 长治市| 治县。| 且末县| 郸城县| 新津县| 敦煌市| 闵行区| 汉川市| 贡觉县| 武清区| 铁力市| 交口县| 莲花县| 万盛区| 民丰县| 太湖县| 镇赉县| 邹城市| 莱阳市| 尤溪县| 东平县| 灯塔市| 武宁县|