找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Numbers; Walter Ledermann Book 1962 Walter Ledermann 1962 Unity.algebra.complex number.function.functions.presentation.variable

[復(fù)制鏈接]
樓主: 閃爍
11#
發(fā)表于 2025-3-23 12:59:54 | 只看該作者
Das Projektdesign von Stadtleben, on the circumference of the ....=1. Note that the condition .=1 is equivalent to .., so that complex numbers of unit modulus are characterized by the fact that the conjugate complex coincides with the reciprocal.
12#
發(fā)表于 2025-3-23 17:13:03 | 只看該作者
13#
發(fā)表于 2025-3-23 21:47:14 | 只看該作者
14#
發(fā)表于 2025-3-24 01:39:40 | 只看該作者
axiomatic treatment. However, the steps that had to be omitted (with due warning) can easily be filled in by the methods of abstract algebra, which do not conflict with the ‘naive‘ attitude adopted here. I should like to thank my friend and colleague Dr. J. A. Green for a number of valuable suggestions, espec978-0-7100-4345-0978-94-011-6570-9
15#
發(fā)表于 2025-3-24 03:59:13 | 只看該作者
16#
發(fā)表于 2025-3-24 10:02:00 | 只看該作者
17#
發(fā)表于 2025-3-24 12:22:04 | 只看該作者
18#
發(fā)表于 2025-3-24 17:32:23 | 只看該作者
19#
發(fā)表于 2025-3-24 22:49:26 | 只看該作者
https://doi.org/10.1007/978-3-531-90132-9and conversely, any relation between points of a plane can, in principle, be regarded as a relation between complex numbers. The reader should, however, keep the logical situation clearly in mind : we have defined complex numbers as algebraical objects obeying certain laws of composition.
20#
發(fā)表于 2025-3-24 23:19:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 01:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武冈市| 松滋市| 浑源县| 黄龙县| 铅山县| 怀仁县| 娄底市| 泰兴市| 靖边县| 福泉市| 蕉岭县| 马鞍山市| 丰台区| 沙湾县| 顺平县| 收藏| 奉新县| 米脂县| 咸阳市| 东源县| 上高县| 普陀区| 陈巴尔虎旗| 巨鹿县| 红桥区| 万源市| 顺昌县| 安新县| 曲阜市| 平潭县| 海丰县| 和平区| 海阳市| 连南| 攀枝花市| 黎川县| 滦南县| 会东县| 孟连| 崇阳县| 育儿|