找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Multiplication; Serge Lang Book 1983 Springer-Verlag New York Inc. 1983 Abelian varieties.Abelian variety.Finite.Komplexe Multipli

[復制鏈接]
樓主: thyroidectomy
21#
發(fā)表于 2025-3-25 07:00:59 | 只看該作者
22#
發(fā)表于 2025-3-25 09:23:07 | 只看該作者
23#
發(fā)表于 2025-3-25 14:15:02 | 只看該作者
Analytic Complex Multiplication, admits a Riemann form, and such a projective embedding is obtained by projective coordinates given by theta functions. We shall not need to know anything about such theta functions aside from their existence. An . is a complex torus which admits a Riemann form.
24#
發(fā)表于 2025-3-25 19:25:47 | 只看該作者
Georges Bastin,Jean-Michel Coroneader should end up knowing the same basic theorems. Because of my background, I use the terminology of Weil (generic points when needed), and the language of reduction mod . is that of Shimura. I have recalled with proofs some elementary definitions and properties, and without proof some of the more advanced results in this direction.
25#
發(fā)表于 2025-3-25 21:21:28 | 只看該作者
26#
發(fā)表于 2025-3-26 02:56:19 | 只看該作者
Patricia E. Rao,Daniel J. Kroonre of Langlands concerning the conjugation of Shimura varieties [Lglds]. Tate reformulates the conjecture in terms of a “type transfer”. The first two sections of the chapter give the general algebraic number theory setting for this type transfer, and the final sections give the application to the abelian varieties with complex multiplication.
27#
發(fā)表于 2025-3-26 04:28:30 | 只看該作者
28#
發(fā)表于 2025-3-26 11:55:24 | 只看該作者
29#
發(fā)表于 2025-3-26 15:08:27 | 只看該作者
30#
發(fā)表于 2025-3-26 17:50:07 | 只看該作者
0072-7830 lication in the higher dimensional case, generalizing in a non-trivial way the method of Deuring for elliptic curves, by reduction mod p. Partly through the work of Shimura himself (cf. [Sh 1] [Sh 2], and [Sh 5]), and some others (Serre, Tate, Kubota, Ribet, Deligne etc.) it is possible today to mak
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 04:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
汉阴县| 高安市| 将乐县| 那曲县| 尖扎县| 遵义市| 孝义市| 连云港市| 蕉岭县| 华坪县| 蓝山县| 和林格尔县| 汉川市| 龙泉市| 天镇县| 托里县| 江川县| 漳浦县| 松潘县| 启东市| 八宿县| 常山县| 密云县| 南部县| 曲周县| 平乐县| 中超| 百色市| 台南市| 南城县| 盈江县| 准格尔旗| 三明市| 白河县| 正宁县| 巍山| 北票市| 黄平县| 广安市| 留坝县| 西吉县|