找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Multiplication; Serge Lang Book 1983 Springer-Verlag New York Inc. 1983 Abelian varieties.Abelian variety.Finite.Komplexe Multipli

[復(fù)制鏈接]
樓主: thyroidectomy
21#
發(fā)表于 2025-3-25 07:00:59 | 只看該作者
22#
發(fā)表于 2025-3-25 09:23:07 | 只看該作者
23#
發(fā)表于 2025-3-25 14:15:02 | 只看該作者
Analytic Complex Multiplication, admits a Riemann form, and such a projective embedding is obtained by projective coordinates given by theta functions. We shall not need to know anything about such theta functions aside from their existence. An . is a complex torus which admits a Riemann form.
24#
發(fā)表于 2025-3-25 19:25:47 | 只看該作者
Georges Bastin,Jean-Michel Coroneader should end up knowing the same basic theorems. Because of my background, I use the terminology of Weil (generic points when needed), and the language of reduction mod . is that of Shimura. I have recalled with proofs some elementary definitions and properties, and without proof some of the more advanced results in this direction.
25#
發(fā)表于 2025-3-25 21:21:28 | 只看該作者
26#
發(fā)表于 2025-3-26 02:56:19 | 只看該作者
Patricia E. Rao,Daniel J. Kroonre of Langlands concerning the conjugation of Shimura varieties [Lglds]. Tate reformulates the conjecture in terms of a “type transfer”. The first two sections of the chapter give the general algebraic number theory setting for this type transfer, and the final sections give the application to the abelian varieties with complex multiplication.
27#
發(fā)表于 2025-3-26 04:28:30 | 只看該作者
28#
發(fā)表于 2025-3-26 11:55:24 | 只看該作者
29#
發(fā)表于 2025-3-26 15:08:27 | 只看該作者
30#
發(fā)表于 2025-3-26 17:50:07 | 只看該作者
0072-7830 lication in the higher dimensional case, generalizing in a non-trivial way the method of Deuring for elliptic curves, by reduction mod p. Partly through the work of Shimura himself (cf. [Sh 1] [Sh 2], and [Sh 5]), and some others (Serre, Tate, Kubota, Ribet, Deligne etc.) it is possible today to mak
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 09:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
福海县| 盘山县| 曲沃县| 宝山区| 关岭| 旺苍县| 新沂市| 福海县| 睢宁县| 南康市| 疏勒县| 土默特左旗| 读书| 新巴尔虎右旗| 贺州市| 西和县| 微博| 通化县| 铜鼓县| 蕉岭县| 太保市| 太仆寺旗| 正阳县| 屏东县| 花莲县| 同心县| 固安县| 女性| 丰都县| 龙里县| 江达县| 米泉市| 恩平市| 屏山县| 黔江区| 文山县| 岐山县| 府谷县| 伊吾县| 肥城市| 利辛县|