找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Methods for Partial Differential Equations; Heinrich G. W. Begehr,A. Okay Celebi,Wolfgang Tuts Book 19991st edition Kluwer Academi

[復(fù)制鏈接]
樓主: Interjection
51#
發(fā)表于 2025-3-30 10:56:39 | 只看該作者
52#
發(fā)表于 2025-3-30 15:09:23 | 只看該作者
53#
發(fā)表于 2025-3-30 16:40:41 | 只看該作者
54#
發(fā)表于 2025-3-31 00:12:52 | 只看該作者
1388-4271 applied. Whithin the framework of holomorphic functions but are also combined with properties of generalized analytic functions. This can be seen by the many b978-1-4613-3293-0978-1-4613-3291-6Series ISSN 1388-4271
55#
發(fā)表于 2025-3-31 04:36:44 | 只看該作者
56#
發(fā)表于 2025-3-31 05:07:13 | 只看該作者
57#
發(fā)表于 2025-3-31 11:58:44 | 只看該作者
A Reflection Principle and its Applications,ed by a reflection principle, which is proved on weaker assumptions than the Plemelj formulas. Especially one gets rid of H?lder continuity and Ljaponov conditions of the boundary. With the help of this reflection principle, a generalization of the Poisson formula is proved, if there exists a suitab
58#
發(fā)表于 2025-3-31 17:22:07 | 只看該作者
On a Generalized Riemann-Hilbert Boundary Value Problem for Second Order Elliptic Systems in the Plions in form of Cauchy type integrals with real density satisfying a H?lder condition on the boundary [9]. Such a representation is used in the present paper to investigate the problem.where ...The theory of two-dimensional singular integral equations [7] is applied here. In [1, 2] other Riemann-Hil
59#
發(fā)表于 2025-3-31 21:05:09 | 只看該作者
An Application of the Periodic Riemann Boundary Value Problem to a Periodic Crack Problem,first fundamental bundary value problem. By approaches using the solutions of periodic Riemann boundary value problems and a singular integral equation with Hilbert kernel, we obtain the expression for the Stress Intensity Factors (SIF) in closed form for any loading on the crack face. As a concrete
60#
發(fā)表于 2025-3-31 22:51:13 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-30 00:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
望城县| 玉山县| 监利县| 屏东市| 神农架林区| 康马县| 安国市| 巴里| 中方县| 四平市| 谷城县| 齐齐哈尔市| 株洲市| 平安县| 广元市| 凌海市| 商洛市| 且末县| 潮州市| 南皮县| 迁安市| 沙雅县| 镇平县| 巴林右旗| 葫芦岛市| 甘德县| 夏津县| 龙陵县| 正镶白旗| 册亨县| 玉龙| 旺苍县| 清涧县| 交口县| 常宁市| 驻马店市| 定安县| 北川| 上犹县| 崇文区| 蛟河市|