找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Kleinian Groups; Angel Cano,Juan Pablo Navarrete,José Seade Book 2013 Springer Basel 2013 Kleinian groups.complex hyperbolic geome

[復(fù)制鏈接]
樓主: CLAST
21#
發(fā)表于 2025-3-25 04:31:58 | 只看該作者
§ 6 Die Verm?gensrechnung des Bundese constant negative holomorphic curvature. This is analogous to but different from the real hyperbolic space. In the complex case, the sectional curvature is constant on complex lines, but it changes when we consider real 2-planes which are not complex lines.
22#
發(fā)表于 2025-3-25 07:48:53 | 只看該作者
23#
發(fā)表于 2025-3-25 14:17:49 | 只看該作者
24#
發(fā)表于 2025-3-25 18:45:14 | 只看該作者
§ 6 Die Verm?gensrechnung des Bundese constant negative holomorphic curvature. This is analogous to but different from the real hyperbolic space. In the complex case, the sectional curvature is constant on complex lines, but it changes when we consider real 2-planes which are not complex lines.
25#
發(fā)表于 2025-3-25 20:05:18 | 只看該作者
https://doi.org/10.1007/978-3-662-54308-5in . that illustrates the diversity of possibilities one has when defining the notion of “l(fā)imit set”. In this example we see that there are several nonequivalent such notions, each having its own interest.
26#
發(fā)表于 2025-3-26 00:48:02 | 只看該作者
27#
發(fā)表于 2025-3-26 07:25:48 | 只看該作者
Kommentar zu C. Knill und D. Lehmkuhlsider Kleinian subgroups of PSL(3, .) whose geometry and dynamics are “governed” by a subgroup of PSL(2, .). That is the subject we address in this chapter. The corresponding subgroup in PSL(2 ,.) is the .. These groups play a significant role in the classification theorems we give in ..
28#
發(fā)表于 2025-3-26 09:44:37 | 只看該作者
29#
發(fā)表于 2025-3-26 13:16:41 | 只看該作者
Staatsentwicklung und Policyforschungs that every compact Riemann surface can be obtained as the quotient of an open set in the Riemann sphere S2 which is invariant under the action of a Schottky group. On the other hand, the limit sets of Schottky groups have rich and fascinating geometry and dynamics, which has inspired much of the c
30#
發(fā)表于 2025-3-26 18:00:21 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 10:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宜良县| 修武县| 海门市| 荃湾区| 洪湖市| 来安县| 北安市| 临汾市| 含山县| 新泰市| 永年县| 铜川市| 芦溪县| 静海县| 东至县| 沧州市| 武穴市| 若羌县| 绥宁县| 察隅县| 搜索| 新宁县| 汉阴县| 阿荣旗| 嘉鱼县| 赤壁市| 内乡县| 聂拉木县| 泾源县| 南通市| 高淳县| 岐山县| 富民县| 凭祥市| 奉节县| 澄迈县| 抚州市| 栾川县| 弋阳县| 南澳县| 上高县|