找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Integration; A Compendium of Smar Ron Gordon Textbook 2023 The Editor(s) (if applicable) and The Author(s), under exclusive license

[復制鏈接]
樓主: Intermediary
21#
發(fā)表于 2025-3-25 03:40:49 | 只看該作者
Asymptotic Methods, perspectives on some of the results we derived in Chap.?.. More importantly, we will see that judicious use of these approximate methods are needed occasionally in derivations of exact results of integrals and sums.
22#
發(fā)表于 2025-3-25 10:26:50 | 只看該作者
23#
發(fā)表于 2025-3-25 15:37:56 | 只看該作者
Staatliche Sozialpolitik in Deutschlanday send chills down the spine. But using results from the previous chapter, we will see how this point of view pays dividends to those who treasure new ways of evaluating integrals. We will also illustrate applications to the evaluation of sums.
24#
發(fā)表于 2025-3-25 18:49:29 | 只看該作者
25#
發(fā)表于 2025-3-25 21:28:16 | 只看該作者
https://doi.org/10.1007/978-3-658-18951-8 perspectives on some of the results we derived in Chap.?.. More importantly, we will see that judicious use of these approximate methods are needed occasionally in derivations of exact results of integrals and sums.
26#
發(fā)表于 2025-3-26 00:39:46 | 只看該作者
2192-4791 ves to detail to the enthusiastic mathematics undergraduate, or the physics or engineering graduate student, the art and science of evaluating difficult integrals, sums, and products..978-3-031-24227-4978-3-031-24228-1Series ISSN 2192-4791 Series E-ISSN 2192-4805
27#
發(fā)表于 2025-3-26 06:09:18 | 只看該作者
28#
發(fā)表于 2025-3-26 11:24:58 | 只看該作者
29#
發(fā)表于 2025-3-26 14:47:36 | 只看該作者
Cauchy Principal Value, a singularity otherwise enclosed by the contour. In this chapter, we will explore the concept in cases where there are singularities on a contour. First, we will explore how to deal with removable singularities; we will see that, despite an integrand being finite at a removable singularity, we must
30#
發(fā)表于 2025-3-26 18:37:06 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 23:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
桦甸市| 于都县| 中宁县| 辽阳市| 于都县| 化德县| 林口县| 通化县| 阳曲县| 花莲市| 临猗县| 元阳县| 策勒县| 红河县| 老河口市| 宜兰县| 六盘水市| 大渡口区| 丹江口市| 苏州市| 治多县| 江北区| 沁水县| 洪洞县| 萨迦县| 周宁县| 广南县| 永泰县| 屯留县| 中方县| 盖州市| 江陵县| 抚远县| 乐陵市| 冕宁县| 屯留县| 桦甸市| 当阳市| 桓台县| 延川县| 海门市|