找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex General Relativity; Giampiero Esposito Book 2002 Springer Science+Business Media Dordrecht 2002 Boundary value problem.Gravity.Min

[復(fù)制鏈接]
樓主: endocarditis
11#
發(fā)表于 2025-3-23 12:20:23 | 只看該作者
12#
發(fā)表于 2025-3-23 15:17:24 | 只看該作者
13#
發(fā)表于 2025-3-23 19:44:34 | 只看該作者
14#
發(fā)表于 2025-3-24 00:50:49 | 只看該作者
978-90-481-4518-8Springer Science+Business Media Dordrecht 2002
15#
發(fā)表于 2025-3-24 05:26:19 | 只看該作者
16#
發(fā)表于 2025-3-24 08:02:52 | 只看該作者
https://doi.org/10.1007/978-3-322-80792-2n such vector spaces and their duals, realized by a symplectic form. Moreover, for Lorentzian metrics, complex conjugation is the anti-isomorphism between unprimed and primed spin-space. Finally, for any space-time point, its tangent space is isomorphic to the tensor product of unprimed and primed s
17#
發(fā)表于 2025-3-24 12:13:16 | 只看該作者
Ausbruch aus dem Elfenbeinturm,basic tools for studying conformal gravity within the framework of general relativity. This is achieved by defining and using the Bach and Eastwood-Dighton tensors, here presented in two-spinor form (relying on previous work by Kozameh, Newman and Tod). After defining .-spaces and Einstein spaces, i
18#
發(fā)表于 2025-3-24 16:06:53 | 只看該作者
19#
發(fā)表于 2025-3-24 22:48:31 | 只看該作者
20#
發(fā)表于 2025-3-25 02:21:16 | 只看該作者
Rainer Eising,Beate Kohler-Kochauge theory of the Poincaré group leads to its presence, the constraints are second-class and the occurrence of cosmological singularities can be less generic than in general relativity. In a space-time manifold with non-vanishing torsion, the Riemann tensor has 36 independent real components at eac
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 18:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
舟山市| 汶上县| 沂源县| 鄱阳县| 东源县| 连山| 丰原市| 甘肃省| 云林县| 乌拉特前旗| 平山县| 通州市| 武定县| 二连浩特市| 承德县| 宜城市| 清新县| 平凉市| 应城市| 张掖市| 沈阳市| 南充市| 河间市| 胶南市| 沐川县| 尖扎县| 龙南县| 叙永县| 微山县| 盘锦市| 永宁县| 汤阴县| 清丰县| 泰宁县| 井冈山市| 剑川县| 肃南| 广东省| 柘城县| 马龙县| 萨迦县|