找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Data Modeling and Computationally Intensive Statistical Methods; Pietro Mantovan,Piercesare Secchi Book 2010 Springer-Verlag Milan

[復(fù)制鏈接]
樓主: Enkephalin
31#
發(fā)表于 2025-3-26 22:56:51 | 只看該作者
32#
發(fā)表于 2025-3-27 04:57:20 | 只看該作者
A parametric Markov chain to model age- and state-dependent wear processes,to the literature, it results that statisticians and engineers have almost always modeled wear processes by . increments models, which imply that future wear is assumed to depend, at most, on the system’s age. In many cases itseems to be more realistic and appropriate to adopts to chastic models whi
33#
發(fā)表于 2025-3-27 07:06:11 | 只看該作者
Case studies in Bayesian computation using INLA,model, for instance, time and space dependence or the smooth effect of covariates. Many well-known statistical models, such as smoothing-spline models, space time models, semiparametric regression, spatial and spatio-temporal models, log-Gaussian Cox models, and geostatistical models are latent Gaus
34#
發(fā)表于 2025-3-27 13:17:43 | 只看該作者
A graphical models approach for comparing gene sets,at are, somehow, functionally related. For example, genes appearing in a known biological pathway naturally define a gene set. Gene sets are usually identified from a priori biological knowledge. Nowadays, many bioinformatics resources store such kind of knowledge (see, for example, the Kyoto Encycl
35#
發(fā)表于 2025-3-27 17:06:32 | 只看該作者
Predictive densities and prediction limits based on predictive likelihoods,vation and the model parameter. Since, according to the likelihood principle, all the evidence is contained in the joint likelihood function, a predictive likelihood for the future observation is obtained by eliminating the nuisance quantity, namely the unknown model parameter. This paper focuses on
36#
發(fā)表于 2025-3-27 20:05:48 | 只看該作者
37#
發(fā)表于 2025-3-28 00:21:32 | 只看該作者
38#
發(fā)表于 2025-3-28 03:45:10 | 只看該作者
39#
發(fā)表于 2025-3-28 07:28:24 | 只看該作者
40#
發(fā)表于 2025-3-28 13:51:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 22:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
北川| 宁海县| 阜城县| 思茅市| 安丘市| 西平县| 勐海县| 新巴尔虎右旗| 建水县| 阿克陶县| 林口县| 仪陇县| 广平县| 延安市| 潞城市| 开远市| 峨山| 确山县| 汉川市| 仲巴县| 汉中市| 平陆县| 德安县| 河南省| 云阳县| 本溪市| 泌阳县| 淅川县| 赤水市| 贵州省| 民和| 崇仁县| 张家界市| 水城县| 郴州市| 宜昌市| 萨迦县| 梓潼县| 自治县| 波密县| 鄯善县|