找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Analysis, Operators, and Related Topics; The S. A. Vinogradov Victor P. Havin,Nikolai K. Nikolski Conference proceedings 2000 Sprin

[復制鏈接]
樓主: exposulate
41#
發(fā)表于 2025-3-28 17:01:53 | 只看該作者
Free Interpolation in Spaces of Analytic Functionstion defined on an infinite part Λ of a domain . ? ? and taken at random cannot be interpolated, as a rule, by a function analytic in. (. ∈ .(.), for short). In other words, denoting by .. the operator of restriction to Λ, we may assert that ..(.(.)) is, as a rule, a very special subset of.(Λ), the
42#
發(fā)表于 2025-3-28 21:05:12 | 只看該作者
On Embedding Theorems for Coinvariant Subspaces of the Shift Operator. I in the open unit disk . with 0 < . ≤ +∞. In connection with the Hardy spaces, the backward shift operator, and related questions, we refer to [13] and [15]. Every function . ∈ .. has finite angular boundary values almost everywhere on the unit circle .. Denote by .(ζ) the angular boundary value of
43#
發(fā)表于 2025-3-29 02:37:50 | 只看該作者
44#
發(fā)表于 2025-3-29 03:08:30 | 只看該作者
45#
發(fā)表于 2025-3-29 10:10:52 | 只看該作者
46#
發(fā)表于 2025-3-29 11:38:10 | 只看該作者
47#
發(fā)表于 2025-3-29 16:59:05 | 只看該作者
Interpolation Involving Bounded Bianalytic Functionserpolation precisely as their parent lattices. Some applications to free interpolation by Fourier coefficients of bounded bianalytic functions are considered. (Note different meanings of the word “interpolation”.)
48#
發(fā)表于 2025-3-29 23:40:05 | 只看該作者
49#
發(fā)表于 2025-3-30 00:12:10 | 只看該作者
Interpolation Sets for the H?lder Spaces of Functions Analytic in a Strip set we mean a set such that any H?lder function on this set is the trace of some function belonging to the analytic H?lder class in the strip. A set is an interpolation set if and only if its inner part is sparse and in every boundary interval (of length less then 1) there is a “big” subinterval fr
50#
發(fā)表于 2025-3-30 06:04:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 05:12
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
田阳县| 天柱县| 襄城县| 灵川县| 宽甸| 梅河口市| 普陀区| 石林| 中江县| 绵竹市| 晋宁县| 黄梅县| 连云港市| 含山县| 长海县| 全椒县| 浮山县| 柘荣县| 武邑县| 梧州市| 绿春县| 高密市| 读书| 丽水市| 东阳市| 凌云县| 黄骅市| 台山市| 德令哈市| 百色市| 博乐市| 阳西县| 灵寿县| 禹州市| 融水| 浑源县| 宝清县| 砀山县| 海丰县| 许昌县| 安图县|