找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Analysis with Applications to Number Theory; Tarlok Nath Shorey Textbook 2020 Springer Nature Singapore Pte Ltd. 2020 Cauchy Theor

[復(fù)制鏈接]
查看: 43549|回復(fù): 47
樓主
發(fā)表于 2025-3-21 17:01:00 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Complex Analysis with Applications to Number Theory
編輯Tarlok Nath Shorey
視頻videohttp://file.papertrans.cn/232/231386/231386.mp4
概述Focuses on interactions of complex analysis with number theory.Supplements suitable solved examples and problems with all chapters.Is authored by the winner of the Shanti Swarup Bhatnagar Prize for Sc
叢書名稱Infosys Science Foundation Series
圖書封面Titlebook: Complex Analysis with Applications to Number Theory;  Tarlok Nath Shorey Textbook 2020 Springer Nature Singapore Pte Ltd. 2020 Cauchy Theor
描述.The book discusses major topics in complex analysis with applications to number theory. This book is intended as a text for graduate students of mathematics and undergraduate students of engineering, as well as to researchers in complex analysis and number theory. This theory is a prerequisite for the study of many areas of mathematics, including the theory of several finitely and infinitely many complex variables, hyperbolic geometry, two and three manifolds and number theory. In additional to solved examples and problems, the book covers most of the topics of current interest, such as Cauchy theorems, Picard’s theorems, Riemann–Zeta function, Dirichlet theorem,?.gamma.?function and harmonic functions.?.
出版日期Textbook 2020
關(guān)鍵詞Cauchy Theorem; Conformal Mappings; Riemann Mapping Theorem; Picard‘s Theorems; Gamma Function; Riemann Z
版次1
doihttps://doi.org/10.1007/978-981-15-9097-9
isbn_softcover978-981-15-9099-3
isbn_ebook978-981-15-9097-9Series ISSN 2363-6149 Series E-ISSN 2363-6157
issn_series 2363-6149
copyrightSpringer Nature Singapore Pte Ltd. 2020
The information of publication is updating

書目名稱Complex Analysis with Applications to Number Theory影響因子(影響力)




書目名稱Complex Analysis with Applications to Number Theory影響因子(影響力)學(xué)科排名




書目名稱Complex Analysis with Applications to Number Theory網(wǎng)絡(luò)公開度




書目名稱Complex Analysis with Applications to Number Theory網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Complex Analysis with Applications to Number Theory被引頻次




書目名稱Complex Analysis with Applications to Number Theory被引頻次學(xué)科排名




書目名稱Complex Analysis with Applications to Number Theory年度引用




書目名稱Complex Analysis with Applications to Number Theory年度引用學(xué)科排名




書目名稱Complex Analysis with Applications to Number Theory讀者反饋




書目名稱Complex Analysis with Applications to Number Theory讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:05:17 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:45:33 | 只看該作者
地板
發(fā)表于 2025-3-22 05:32:04 | 只看該作者
Complex Analysis with Applications to Number Theory
5#
發(fā)表于 2025-3-22 10:45:34 | 只看該作者
6#
發(fā)表于 2025-3-22 14:25:50 | 只看該作者
Infosys Science Foundation Serieshttp://image.papertrans.cn/c/image/231386.jpg
7#
發(fā)表于 2025-3-22 19:30:03 | 只看該作者
8#
發(fā)表于 2025-3-22 21:33:53 | 只看該作者
978-981-15-9099-3Springer Nature Singapore Pte Ltd. 2020
9#
發(fā)表于 2025-3-23 04:32:58 | 只看該作者
10#
發(fā)表于 2025-3-23 07:41:36 | 只看該作者
Acoustics in Halls for Speech and Musicunction are harmonic. We prove the existence of a harmonic conjugate of a harmonic function in a simply connected region in Sect.?4.4 where we also prove its converse. We introduce continuous functions with Mean Value Property in a region . in Sect.?4.5 and prove in Sect.?4.5 Maximum principle for h
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 01:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
西盟| 旅游| 克山县| 宜昌市| 仁布县| 玛曲县| 汶川县| 白城市| 揭东县| 修水县| 衡南县| 大化| 莲花县| 铜川市| 莫力| 宿迁市| 武汉市| 津南区| 榆社县| 新巴尔虎左旗| 昌邑市| 宾阳县| 碌曲县| 敦煌市| 湾仔区| 新疆| 镇巴县| 定南县| 泗阳县| 拜泉县| 博乐市| 天气| 左权县| 九龙城区| 宜川县| 澎湖县| 哈密市| 竹溪县| 阳原县| 仁怀市| 大荔县|