找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Analysis in one Variable; Raghavan Narasimhan Book 19851st edition Springer Science+Business Media New York 1985 Complex analysis.

[復制鏈接]
查看: 29328|回復: 47
樓主
發(fā)表于 2025-3-21 18:43:20 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Complex Analysis in one Variable
編輯Raghavan Narasimhan
視頻videohttp://file.papertrans.cn/232/231381/231381.mp4
圖書封面Titlebook: Complex Analysis in one Variable;  Raghavan Narasimhan Book 19851st edition Springer Science+Business Media New York 1985 Complex analysis.
描述This book is based on a first-year graduate course I gave three times at the University of Chicago. As it was addressed to graduate students who intended to specialize in mathematics, I tried to put the classical theory of functions of a complex variable in context, presenting proofs and points of view which relate the subject to other branches of mathematics. Complex analysis in one variable is ideally suited to this attempt. Of course, the branches of mathema- tics one chooses, and the connections one makes, must depend on personal taste and knowledge. My own leaning towards several complex variables will be apparent, especially in the notes at the end of the different chapters. The first three chapters deal largely with classical material which is avai- lable in the many books on the subject. I have tried to present this material as efficiently as I could, and, even here, to show the relationship with other branches of mathematics. Chapter 4 contains a proof of Picard‘s theorem; the method of proof I have chosen has far-reaching generalizations in several complex variables and in differential geometry. The next two chapters deal with the Runge approximation theorem and its many
出版日期Book 19851st edition
關鍵詞Complex analysis; Convexity; Meromorphic function; Monodromy; Residue theorem; Riemann surface; corona the
版次1
doihttps://doi.org/10.1007/978-1-4757-1106-6
isbn_ebook978-1-4757-1106-6
copyrightSpringer Science+Business Media New York 1985
The information of publication is updating

書目名稱Complex Analysis in one Variable影響因子(影響力)




書目名稱Complex Analysis in one Variable影響因子(影響力)學科排名




書目名稱Complex Analysis in one Variable網(wǎng)絡公開度




書目名稱Complex Analysis in one Variable網(wǎng)絡公開度學科排名




書目名稱Complex Analysis in one Variable被引頻次




書目名稱Complex Analysis in one Variable被引頻次學科排名




書目名稱Complex Analysis in one Variable年度引用




書目名稱Complex Analysis in one Variable年度引用學科排名




書目名稱Complex Analysis in one Variable讀者反饋




書目名稱Complex Analysis in one Variable讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:15:43 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:49:33 | 只看該作者
EJB, Spring Remoting, and Web Services, Theorem 2). It is, however, necessary to have some topological information about the location of the poles relative to .. (To phrase it very vaguely, we must know how many times . winds around ..) We begin with this topological material.
地板
發(fā)表于 2025-3-22 05:52:02 | 只看該作者
5#
發(fā)表于 2025-3-22 12:26:24 | 只看該作者
,The Inhomogeneous Cauchy-Riemann Equation and Runge’s Theorem,n an explicit solution which leads to a variant of the Cauchy integral formula. This variant can often be used instead of the usual Cauchy formula, and has the advantage of not involving winding numbers. We shall illustrate this principle with a variant of the argument principle and a proof of the Runge theorem.
6#
發(fā)表于 2025-3-22 16:39:28 | 只看該作者
7#
發(fā)表于 2025-3-22 19:28:41 | 只看該作者
8#
發(fā)表于 2025-3-22 23:15:42 | 只看該作者
9#
發(fā)表于 2025-3-23 04:10:47 | 只看該作者
10#
發(fā)表于 2025-3-23 07:21:41 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 19:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
十堰市| 宜州市| 长兴县| 获嘉县| 常山县| 左权县| 交口县| 沂源县| 城步| 凤翔县| 古丈县| 永济市| 漳平市| 台北市| 莲花县| 沾化县| 安庆市| 麻城市| 玛沁县| 柳河县| 舞阳县| 韶关市| 陕西省| 阿尔山市| 惠水县| 永清县| 蚌埠市| 敦化市| 湘潭县| 兴文县| 山丹县| 黔西| 宝山区| 保靖县| 黄浦区| 望都县| 溧水县| 吕梁市| 承德县| 呼和浩特市| 五寨县|