找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Analysis and Geometry; Vincenzo Ancona,Alessandro Silva Book 1993 Springer Science+Business Media New York 1993 Invariant.Manifold

[復制鏈接]
樓主: children
31#
發(fā)表于 2025-3-26 21:30:25 | 只看該作者
Wissenschaft und Verantwortung,Due to Serre’s correspondence the most interesting case is codim . = 2. In fact, in this case even 4-folds in ?. should be complete intersections. For . ≤ 5 the remaining cases of “l(fā)ow codimension” are surfaces in ?. and 3-folds in ?.. For surfaces in ?., Ellingsrud and Peskine [8] have established
32#
發(fā)表于 2025-3-27 01:46:05 | 只看該作者
Sprachw?rterbücher im Nationalsozialismus the viewpoint of deformation theory, he suggested, in 1958, investigating the Petersson inner product on the space of holomorphic quadratic differentials. He conjectured that it induced a K?hler metric on the Teichmüller space. After proving this property, Ahlfors showed, in 1961, that the holomorp
33#
發(fā)表于 2025-3-27 07:36:29 | 只看該作者
34#
發(fā)表于 2025-3-27 12:58:27 | 只看該作者
35#
發(fā)表于 2025-3-27 13:59:38 | 只看該作者
University Series in Mathematicshttp://image.papertrans.cn/c/image/231374.jpg
36#
發(fā)表于 2025-3-27 18:41:10 | 只看該作者
https://doi.org/10.1007/978-1-4757-9771-8Invariant; Manifold; algebra; calculus; geometry
37#
發(fā)表于 2025-3-28 00:16:19 | 只看該作者
38#
發(fā)表于 2025-3-28 02:50:19 | 只看該作者
39#
發(fā)表于 2025-3-28 07:43:02 | 只看該作者
40#
發(fā)表于 2025-3-28 13:39:53 | 只看該作者
,Boundedness for Nongeneral-Type 3-Folds in ?5,Due to Serre’s correspondence the most interesting case is codim . = 2. In fact, in this case even 4-folds in ?. should be complete intersections. For . ≤ 5 the remaining cases of “l(fā)ow codimension” are surfaces in ?. and 3-folds in ?.. For surfaces in ?., Ellingsrud and Peskine [8] have established the following beautiful boundedness result.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 03:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
炉霍县| 临猗县| 台州市| 上林县| 乌审旗| 潜江市| 六安市| 兰西县| 彰武县| 汨罗市| 宁河县| 浦江县| 沙坪坝区| 福鼎市| 巴塘县| 宁海县| 于田县| 乐平市| 云安县| 冕宁县| 灌阳县| 株洲市| 彭州市| 阳高县| 宁乡县| 商河县| 淮北市| 龙岩市| 汽车| 岗巴县| 蓝田县| 吴川市| 专栏| 韶关市| 石狮市| 江源县| 和龙市| 泰兴市| 太仆寺旗| 晋中市| 云梦县|