找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Analysis and Geometry; Vincenzo Ancona,Alessandro Silva Book 1993 Springer Science+Business Media New York 1993 Invariant.Manifold

[復制鏈接]
查看: 46040|回復: 61
樓主
發(fā)表于 2025-3-21 17:48:30 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Complex Analysis and Geometry
編輯Vincenzo Ancona,Alessandro Silva
視頻videohttp://file.papertrans.cn/232/231374/231374.mp4
叢書名稱University Series in Mathematics
圖書封面Titlebook: Complex Analysis and Geometry;  Vincenzo Ancona,Alessandro Silva Book 1993 Springer Science+Business Media New York 1993 Invariant.Manifold
出版日期Book 1993
關(guān)鍵詞Invariant; Manifold; algebra; calculus; geometry
版次1
doihttps://doi.org/10.1007/978-1-4757-9771-8
isbn_softcover978-1-4757-9773-2
isbn_ebook978-1-4757-9771-8
copyrightSpringer Science+Business Media New York 1993
The information of publication is updating

書目名稱Complex Analysis and Geometry影響因子(影響力)




書目名稱Complex Analysis and Geometry影響因子(影響力)學科排名




書目名稱Complex Analysis and Geometry網(wǎng)絡公開度




書目名稱Complex Analysis and Geometry網(wǎng)絡公開度學科排名




書目名稱Complex Analysis and Geometry被引頻次




書目名稱Complex Analysis and Geometry被引頻次學科排名




書目名稱Complex Analysis and Geometry年度引用




書目名稱Complex Analysis and Geometry年度引用學科排名




書目名稱Complex Analysis and Geometry讀者反饋




書目名稱Complex Analysis and Geometry讀者反饋學科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

1票 100.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:17:58 | 只看該作者
Twistor Constructions for Vector Bundles, of conformai properties of Riemannian manifolds and in many other topics, such as the classification of harmonic maps into homogeneous spaces (cf., e.g., Refs. 2–4) and the Hermitian rigidity of ?.(?) and other symmetric spaces [1]. In this chapter we extend twistor constructions to any oriented Riemannian . bundle of even rank.
板凳
發(fā)表于 2025-3-22 03:35:31 | 只看該作者
Theory of (,, ,)-Modules. I,by ., is multiplication by .. The commutation relation .. shows that it is interesting to have a complete .-adic topology to work with. This leads us to a finiteness hypothesis over the ring ?[] that is satisfied by the formal completion of the Brieskorn lattice of an isolated hypersurface singularity.
地板
發(fā)表于 2025-3-22 07:50:39 | 只看該作者
CR Analytic Varieties with Given Boundary,y problem in ?.. We consider such boundary problems, with the solution given by geometric measure theory, so singularities of small measure will be allowed. Moreover, it will be convenient to consider linear combinations of subvarieties.
5#
發(fā)表于 2025-3-22 12:09:55 | 只看該作者
A Characterization of ,-Invariant Stein Domains in Symmetric Embeddings,only study .-invariant Stein domains in a Stein . .-space . A natural starting point is the consideration of spaces Ω that appear as fibers of the categorical quotient Ω→.||.; i.e., the only .invariant holomorphic functions on . are the constants O(.). ? ?. It follows that Ω. is an . .-space [10].
6#
發(fā)表于 2025-3-22 14:05:42 | 只看該作者
7#
發(fā)表于 2025-3-22 17:49:56 | 只看該作者
On ,-Jet Ampleness,ints ... . ., ... ? ., the evaluation map .is surjective, where ... denotes the maximal ideal at ... Note that . is spanned (respectively, very ample) if and only if . is 0-jet ample (respectively, 1-jet ample).
8#
發(fā)表于 2025-3-22 22:18:16 | 只看該作者
9#
發(fā)表于 2025-3-23 04:05:24 | 只看該作者
10#
發(fā)表于 2025-3-23 07:45:44 | 只看該作者
Wissenschaft und Verantwortung,only study .-invariant Stein domains in a Stein . .-space . A natural starting point is the consideration of spaces Ω that appear as fibers of the categorical quotient Ω→.||.; i.e., the only .invariant holomorphic functions on . are the constants O(.). ? ?. It follows that Ω. is an . .-space [10].
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 20:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
永济市| 镇赉县| 乐平市| 丰县| 泸水县| 中宁县| 通辽市| 共和县| 防城港市| 色达县| 邵武市| 垫江县| 营口市| 灵台县| 喀喇沁旗| 南木林县| 东台市| 炉霍县| 乌拉特前旗| 黄浦区| 邵东县| 腾冲县| 芒康县| 呼和浩特市| 容城县| 丹阳市| 高安市| 曲阜市| 施秉县| 乌兰县| 阿瓦提县| 汾阳市| 响水县| 新建县| 平乡县| 本溪市| 班玛县| 辰溪县| 宾阳县| 嘉祥县| 石台县|