找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Analysis I; Proceedings of the S Carlos A. Berenstein Conference proceedings 1987 Springer-Verlag Berlin Heidelberg 1987 Chern clas

[復(fù)制鏈接]
查看: 8637|回復(fù): 60
樓主
發(fā)表于 2025-3-21 17:59:35 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Complex Analysis I
副標(biāo)題Proceedings of the S
編輯Carlos A. Berenstein
視頻videohttp://file.papertrans.cn/232/231364/231364.mp4
叢書(shū)名稱Lecture Notes in Mathematics
圖書(shū)封面Titlebook: Complex Analysis I; Proceedings of the S Carlos A. Berenstein Conference proceedings 1987 Springer-Verlag Berlin Heidelberg 1987 Chern clas
描述The past several years have witnessed a striking number of important developments in Complex Analysis. One of the characteristics of these developments has been to bridge the gap existing between the theory of functions of one and of several complex variables. The Special Year in Complex Analysis at the University of Maryland, and these proceedings, were conceived as a forum where these new developments could be presented and where specialists in different areas of complex analysis could exchange ideas. These proceedings contain both surveys of different subjects covered during the year as well as many new results and insights. The manuscripts are accessible not only to specialists but to a broader audience. Among the subjects touched upon are Nevanlinna theory in one and several variables, interpolation problems in Cn, estimations and integral representations of the solutions of the Cauchy-Riemann equations, the complex Monge-Ampère equation, geometric problems in complex analysis in Cn, applications of complex analysis to harmonic analysis, partial differential equations.
出版日期Conference proceedings 1987
關(guān)鍵詞Chern class; Complex analysis; Derivative; Meromorphic function; Nevanlinna theory; Riemann surfaces; calc
版次1
doihttps://doi.org/10.1007/BFb0078339
isbn_softcover978-3-540-18356-3
isbn_ebook978-3-540-47899-7Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer-Verlag Berlin Heidelberg 1987
The information of publication is updating

書(shū)目名稱Complex Analysis I影響因子(影響力)




書(shū)目名稱Complex Analysis I影響因子(影響力)學(xué)科排名




書(shū)目名稱Complex Analysis I網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Complex Analysis I網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Complex Analysis I被引頻次




書(shū)目名稱Complex Analysis I被引頻次學(xué)科排名




書(shū)目名稱Complex Analysis I年度引用




書(shū)目名稱Complex Analysis I年度引用學(xué)科排名




書(shū)目名稱Complex Analysis I讀者反饋




書(shū)目名稱Complex Analysis I讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:40:50 | 只看該作者
0075-8434 evelopments has been to bridge the gap existing between the theory of functions of one and of several complex variables. The Special Year in Complex Analysis at the University of Maryland, and these proceedings, were conceived as a forum where these new developments could be presented and where spec
板凳
發(fā)表于 2025-3-22 03:57:25 | 只看該作者
Conference proceedings 1987are Nevanlinna theory in one and several variables, interpolation problems in Cn, estimations and integral representations of the solutions of the Cauchy-Riemann equations, the complex Monge-Ampère equation, geometric problems in complex analysis in Cn, applications of complex analysis to harmonic analysis, partial differential equations.
地板
發(fā)表于 2025-3-22 06:58:38 | 只看該作者
5#
發(fā)表于 2025-3-22 11:07:41 | 只看該作者
Complex Analysis I978-3-540-47899-7Series ISSN 0075-8434 Series E-ISSN 1617-9692
6#
發(fā)表于 2025-3-22 14:17:31 | 只看該作者
Philipp Brüggemann,Carsten D. Schultzoof [4] does not contain any integration. The main tool is the theorem of Bazilevi? [2]..In the following we prove a stronger version of an important theorem of Hayman on the growth of univalent functions..Our proof is along Milin‘s approach. We also bring as an application a short proof of Hayman‘s regularity theorem [3] stating that
7#
發(fā)表于 2025-3-22 19:24:05 | 只看該作者
https://doi.org/10.1007/BFb0078339Chern class; Complex analysis; Derivative; Meromorphic function; Nevanlinna theory; Riemann surfaces; calc
8#
發(fā)表于 2025-3-22 21:42:54 | 只看該作者
978-3-540-18356-3Springer-Verlag Berlin Heidelberg 1987
9#
發(fā)表于 2025-3-23 02:41:11 | 只看該作者
10#
發(fā)表于 2025-3-23 09:32:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 19:04
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
松潘县| 来安县| 广饶县| 石河子市| 夹江县| 广昌县| 扎赉特旗| 孟津县| 抚州市| 中宁县| 芜湖市| 兴义市| 临泉县| 拉孜县| 潮州市| 永年县| 南召县| 赤城县| 潍坊市| 兴文县| 鄂托克前旗| 诸暨市| 高州市| 临猗县| 五莲县| 庄浪县| 新河县| 法库县| 怀远县| 望城县| 库尔勒市| 漳平市| 苍梧县| 尖扎县| 五峰| 连南| 赤水市| 和静县| 剑川县| 英吉沙县| 澎湖县|