找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Analysis; John M. Howie Textbook 2003 Springer-Verlag London 2003 Analysis.Complex analysis.Complex numbers.Functions of a complex

[復(fù)制鏈接]
樓主: nourish
31#
發(fā)表于 2025-3-27 00:08:16 | 只看該作者
32#
發(fā)表于 2025-3-27 01:06:34 | 只看該作者
33#
發(fā)表于 2025-3-27 05:20:28 | 只看該作者
Laurent Series and the Residue Theorem,In Section 3.5 we looked briefly at functions with isolated singularities. It is clear that a function . with an isolated singularity at a point . cannot have a Taylor series centred on .. What it does have is a . series, a generalized version of a Taylor series in which there are negative as well as positive powers of . — ..
34#
發(fā)表于 2025-3-27 11:38:05 | 只看該作者
Applications of Contour Integration,One of the very attractive features of complex analysis is that it can provide elegant and easy proofs of results in real analysis. Let us look again at Example 8.16.
35#
發(fā)表于 2025-3-27 16:45:16 | 只看該作者
Further Topics,In this section we examine an integral that in effect counts the number of poles and zeros of a meromorphic function .. Recall that, if . has Laurent series . at ., then ord(.) = min {.: . ≠ 0}. If ord(.) = . > 0 then .(.) = 0, and we say that c is a . . of the function .. If ord(.) = -. < 0, then . is a . ..
36#
發(fā)表于 2025-3-27 20:22:29 | 只看該作者
John M. HowieSuitable for both pure and applied mathematicians.Takes account of readers‘ varying needs and backgrounds by presenting ideas through worked examples and informal explanations rather than through "dry
37#
發(fā)表于 2025-3-27 23:05:35 | 只看該作者
38#
發(fā)表于 2025-3-28 04:02:09 | 只看該作者
39#
發(fā)表于 2025-3-28 09:43:29 | 只看該作者
40#
發(fā)表于 2025-3-28 10:44:31 | 只看該作者
What Do I Need to Know?,already. Ideally one would like to assume that the student has some basic knowledge of complex numbers and has experienced a fairly substantial first course in real analysis. But while the first of these requirements is realistic the second is not, for in many courses with an “applied” emphasis a co
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 19:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新民市| 平和县| 乌兰浩特市| 和林格尔县| 卓尼县| 天柱县| 化州市| 江孜县| 娄烦县| 华亭县| 常德市| 望奎县| 固镇县| 楚雄市| 嘉荫县| 浏阳市| 安达市| 渭南市| 金溪县| 米易县| 石台县| 永州市| 凤山市| 上栗县| 溆浦县| 都江堰市| 沭阳县| 犍为县| 延寿县| 衡阳市| 馆陶县| 民权县| 丹凤县| 和平区| 额济纳旗| 大连市| 峨山| 峨边| 循化| 宜兴市| 新密市|