找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Analysis; A Functional Analysi D. H. Luecking,L. A. Rubel Textbook 1984 Springer-Verlag New York Inc. 1984 Analysis.Funktionalanaly

[復制鏈接]
樓主: CYNIC
11#
發(fā)表于 2025-3-23 10:51:22 | 只看該作者
https://doi.org/10.1007/978-3-642-97615-5dditionally preserves scalar multiplication. It follows from Proposition 5.4 that .(G) and .(G’) are isomorphic as algebras if and only if G and G’ are conformally equivalent. But a ring isomorphism can exist without conformal equivalence.
12#
發(fā)表于 2025-3-23 17:52:16 | 只看該作者
13#
發(fā)表于 2025-3-23 20:46:47 | 只看該作者
Christian Büning,Constantin Wirth(f) = ∫ f(z)dμ(z) when it is necessary to indicate the independent variable. “Measures” have the same properties as continuous linear functionals (which is what they are); for reinforcement, we list them here. Given μ ∈ M.(G):
14#
發(fā)表于 2025-3-23 23:07:22 | 只看該作者
The Dual of ,(G),(f) = ∫ f(z)dμ(z) when it is necessary to indicate the independent variable. “Measures” have the same properties as continuous linear functionals (which is what they are); for reinforcement, we list them here. Given μ ∈ M.(G):
15#
發(fā)表于 2025-3-24 06:00:46 | 只看該作者
16#
發(fā)表于 2025-3-24 08:36:50 | 只看該作者
Interpolation,icit formula. The second is via solving infinitely many linear equations in infinitely many unknowns, the Taylor coefficients. (See [M. Eidelheit] and [P. J. Davis].) The third is via functional analysis—specifically the Banach-Dieudonné theorem. Kere we take the third route, obtaining in the process a functional analysis proof of Theorem 12.18.
17#
發(fā)表于 2025-3-24 14:32:10 | 只看該作者
0172-5939 erial, from the point of view of functional analysis. The main object of study is the algebra H(G) of all holomorphic functions on the open set G, with the topology on H(G) of uniform convergence on compact subsets of G. From this point of vie~, the main theorem of the theory is Theorem 9.5, which c
18#
發(fā)表于 2025-3-24 17:11:08 | 只看該作者
19#
發(fā)表于 2025-3-24 20:08:41 | 只看該作者
20#
發(fā)表于 2025-3-25 01:07:57 | 只看該作者
Complex Analysis978-1-4613-8295-9Series ISSN 0172-5939 Series E-ISSN 2191-6675
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-14 04:45
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
远安县| 桓仁| 兴国县| 平塘县| 林甸县| 益阳市| 延长县| 扶沟县| 平阳县| 土默特右旗| 米脂县| 若羌县| 沙雅县| 平利县| 梁平县| 唐河县| 庐江县| 高邑县| 百色市| 始兴县| 绿春县| 镇平县| 廉江市| 法库县| 武平县| 东乡族自治县| 老河口市| 郴州市| 青神县| 桓仁| 河南省| 巴塘县| 黑水县| 株洲市| 金坛市| 双鸭山市| 德格县| 山西省| 石渠县| 西和县| 康保县|