找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complex Abelian Varieties; Herbert Lange,Christina Birkenhake Book 19921st edition Springer-Verlag Berlin Heidelberg 1992 Abelian varietie

[復制鏈接]
樓主: 驅逐
11#
發(fā)表于 2025-3-23 11:40:40 | 只看該作者
12#
發(fā)表于 2025-3-23 16:09:22 | 只看該作者
13#
發(fā)表于 2025-3-23 18:47:31 | 只看該作者
14#
發(fā)表于 2025-3-24 00:53:23 | 只看該作者
15#
發(fā)表于 2025-3-24 03:36:32 | 只看該作者
The Status of the Conversation,. = ?./Λ with A a lattice in ?.. The complex torus . is a complex manifold of dimension .. It inherits the structure of a complex Lie group from the vector space ?.. A meromorphic function on ?., periodic with respect to Λ, may be considered as a function on .. An . is a complex torus admitting suff
16#
發(fā)表于 2025-3-24 07:57:11 | 只看該作者
Sports Journalism and Coming Out Storiessays that Pic(.) is an extension of the Néron-Severi group NS(.) by the group Hom(Λ, ?.) of characters of Λ with values in the circle group ?.. The group NS(.) turns out to be the group of hermitian forms . on . satisfying Im . (Λ, Λ) ? ?. The theorem was proven for dimension 2 by Humbert [1] applyi
17#
發(fā)表于 2025-3-24 12:46:14 | 只看該作者
18#
發(fā)表于 2025-3-24 18:31:07 | 只看該作者
19#
發(fā)表于 2025-3-24 21:08:31 | 只看該作者
Combinatorial Properties of Strength Groups,d embedding. Recall the group .(.) consisting of all . ∈ . with .... ? .. We will see that the translations of . by elements of .(.) extend to linear automorphisms of ?.. In fact, .(.) is the largest group of translations with this property. This leads to a projective representation ?:.(.) → PGL.(?)
20#
發(fā)表于 2025-3-25 01:04:54 | 只看該作者
Home-Away-Pattern Based Branching Schemes,tructure of a closed subvariety of ?.. As such, . is the set of zeros of a homogeneous ideal . of polynomials in . +1 variables. Since the embedding ?. is defined by means of a basis of theta functions of ..(.), the polynomials of . may be considered as relations among these theta functions. Accordi
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 01:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
尚义县| 板桥市| 五寨县| 渭源县| 东源县| 崇州市| 宁河县| 昌图县| 灵川县| 金堂县| 松溪县| 上饶县| 宜州市| 崇义县| 安陆市| 理塘县| 山东省| 大埔县| 微山县| 凤庆县| 甘孜| 朝阳市| 绥滨县| 蒲城县| 镇原县| 灵石县| 珲春市| 富川| 和顺县| 丹东市| 衡阳县| 海兴县| 明溪县| 津市市| 江陵县| 乐清市| 公主岭市| 衡山县| 自治县| 庆城县| 行唐县|