找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Complementarity, Duality and Symmetry in Nonlinear Mechanics; Proceedings of the I David Y. Gao Conference proceedings 2004 Springer Scienc

[復(fù)制鏈接]
樓主: Odious
61#
發(fā)表于 2025-4-1 02:11:09 | 只看該作者
https://doi.org/10.1007/978-90-481-9577-0Boundary value problem; Finite; Fundament; calculus; mathematics; optimization; structure; theorem; partial
62#
發(fā)表于 2025-4-1 09:02:27 | 只看該作者
63#
發(fā)表于 2025-4-1 12:07:44 | 只看該作者
https://doi.org/10.1007/978-3-642-55519-0Many problems of classical mechanics are variational in nature, but not convex. This paper shows how the duality theory of convex optimization can be extended to classical mechanics. It is shown in particular that there is a duality theory for functions of square matrices which factor through the determinant.
64#
發(fā)表于 2025-4-1 16:41:36 | 只看該作者
65#
發(fā)表于 2025-4-1 20:25:48 | 只看該作者
https://doi.org/10.1007/978-3-322-94840-3This paper describes dual formulations of two entropy optimization principles, Jaynes’ maximum entropy and Kullback-Leibler’s minimum cross-entropy principles. Particular emphases are given to their applications in various optimization problems such as minimax, complementarity and nonlinear programming problems.
66#
發(fā)表于 2025-4-1 23:08:42 | 只看該作者
67#
發(fā)表于 2025-4-2 05:47:41 | 只看該作者
68#
發(fā)表于 2025-4-2 08:33:13 | 只看該作者
Non-Convex Duality,Many problems of classical mechanics are variational in nature, but not convex. This paper shows how the duality theory of convex optimization can be extended to classical mechanics. It is shown in particular that there is a duality theory for functions of square matrices which factor through the determinant.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-17 05:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
林芝县| 舒兰市| 宁波市| 阳信县| 大兴区| 峨山| 南召县| 西丰县| 渭南市| 东阳市| 木里| 焦作市| 洪洞县| 衡山县| 富平县| 昭苏县| 周口市| 贵德县| 永清县| 萍乡市| 武定县| 台北市| 临安市| 龙井市| 华容县| 长葛市| 清远市| 绍兴县| 南乐县| 老河口市| 博乐市| 曲沃县| 承德市| 诸暨市| 侯马市| 文安县| 陈巴尔虎旗| 张家川| 安福县| 樟树市| 封开县|