找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Compact and Fast Machine Learning Accelerator for IoT Devices; Hantao Huang,Hao Yu Book 2019 Springer Nature Singapore Pte Ltd. 2019 Inter

[復(fù)制鏈接]
查看: 24988|回復(fù): 37
樓主
發(fā)表于 2025-3-21 16:12:07 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Compact and Fast Machine Learning Accelerator for IoT Devices
編輯Hantao Huang,Hao Yu
視頻videohttp://file.papertrans.cn/231/230804/230804.mp4
概述Offers readers a systematic and comprehensive literature review of fast and compact machine learning algorithms on IoT devices.Provides various techniques on neural network model optimization such as
叢書名稱Computer Architecture and Design Methodologies
圖書封面Titlebook: Compact and Fast Machine Learning Accelerator for IoT Devices;  Hantao Huang,Hao Yu Book 2019 Springer Nature Singapore Pte Ltd. 2019 Inter
描述.This book presents the latest techniques for machine learning based data analytics on IoT edge devices. A comprehensive literature review on neural network compression and machine learning accelerator is presented from both algorithm level optimization and hardware architecture optimization. Coverage focuses on shallow and deep neural network with real applications on smart buildings. The authors also discuss hardware architecture design with coverage focusing on both CMOS based computing systems and the new emerging Resistive Random-Access Memory (RRAM) based systems. Detailed case studies such as indoor positioning, energy management and intrusion detection are also presented for smart buildings..
出版日期Book 2019
關(guān)鍵詞Internet-of-things (IoT); Machine Learning Accelerator; Shadow Neural Network; Deep Neural Network; Leas
版次1
doihttps://doi.org/10.1007/978-981-13-3323-1
isbn_ebook978-981-13-3323-1Series ISSN 2367-3478 Series E-ISSN 2367-3486
issn_series 2367-3478
copyrightSpringer Nature Singapore Pte Ltd. 2019
The information of publication is updating

書目名稱Compact and Fast Machine Learning Accelerator for IoT Devices影響因子(影響力)




書目名稱Compact and Fast Machine Learning Accelerator for IoT Devices影響因子(影響力)學(xué)科排名




書目名稱Compact and Fast Machine Learning Accelerator for IoT Devices網(wǎng)絡(luò)公開度




書目名稱Compact and Fast Machine Learning Accelerator for IoT Devices網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Compact and Fast Machine Learning Accelerator for IoT Devices被引頻次




書目名稱Compact and Fast Machine Learning Accelerator for IoT Devices被引頻次學(xué)科排名




書目名稱Compact and Fast Machine Learning Accelerator for IoT Devices年度引用




書目名稱Compact and Fast Machine Learning Accelerator for IoT Devices年度引用學(xué)科排名




書目名稱Compact and Fast Machine Learning Accelerator for IoT Devices讀者反饋




書目名稱Compact and Fast Machine Learning Accelerator for IoT Devices讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:54:57 | 只看該作者
Fundamentals and Literature Review,e use IoT based smart buildings as one example to illustrate the edge computing in IoT system for applications such as indoor positioning, energy management and network intrusion detection. Furthermore, we will discuss the basics of the machine learning algorithms, distributed machine learning, mach
板凳
發(fā)表于 2025-3-22 02:53:02 | 只看該作者
地板
發(fā)表于 2025-3-22 08:24:47 | 只看該作者
Tensor-Solver for Deep Neural Network, dimensional tensors with low-rank decomposition, significant neural network compression can be achieved with maintained accuracy. A layer-wise training algorithm of tensorized multilayer neural network is further introduced by modified alternating least-squares (MALS) method. The proposed TNN algor
5#
發(fā)表于 2025-3-22 12:16:55 | 只看該作者
6#
發(fā)表于 2025-3-22 15:23:00 | 只看該作者
Conclusion and Future Works,al-world, use sensed information to reason the environment and then perform the desired action. The intelligence of IoT systems comes from appropriate actions by reasoning the environmental data, which is mainly based on machine learning techniques.
7#
發(fā)表于 2025-3-22 20:17:21 | 只看該作者
Steffen Sigmund,Gert Albert,Mateusz Stachuradiscuss the machine learning based data analytics techniques from both the algorithm perspective and computation perspective. As the increasing complexity of machine learning algorithms, there is an emerging need to re-examine the current computation platform. A dedicated hardware computation platfo
8#
發(fā)表于 2025-3-23 00:45:50 | 只看該作者
9#
發(fā)表于 2025-3-23 03:00:17 | 只看該作者
Steffen Sigmund,Gert Albert,Mateusz Stachuraapplied to reduce the training complexity. Furthermore, the optimized learning algorithm is mapped on CMOS and RRAM based hardware. The two implementations on both RRAM and CMOS are presented. The detailed analysis of hardware implementation is discussed with significant speed-up and energy-efficien
10#
發(fā)表于 2025-3-23 08:26:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 06:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
英吉沙县| 德安县| 深水埗区| 通辽市| 浦江县| 石首市| 莱阳市| 马山县| 福安市| 巴彦淖尔市| 兴化市| 峨山| 汶上县| 西青区| 仲巴县| 甘孜| 神农架林区| 工布江达县| 荣昌县| 茂名市| 临夏县| 新宁县| 旬阳县| 崇文区| 平潭县| 织金县| 苍南县| 南召县| 盘山县| 上蔡县| 嫩江县| 大渡口区| 灌云县| 上蔡县| 宁国市| 新津县| 西平县| 辽阳县| 仙居县| 遂宁市| 江达县|