找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Compact Riemann Surfaces; An Introduction to C Jürgen Jost Textbook 20022nd edition Springer-Verlag Berlin Heidelberg 2002 Meromorphic func

[復(fù)制鏈接]
樓主: 戰(zhàn)神
11#
發(fā)表于 2025-3-23 09:52:29 | 只看該作者
Differential Geometry of Riemann Surfaces,A two-dimensional manifold is called a surface.
12#
發(fā)表于 2025-3-23 15:21:04 | 只看該作者
Harmonic Maps,This section will recall some basic results about the spaces mentioned in the title. Readers who already have a basic knowledge about these spaces may therefore skip the present section.
13#
發(fā)表于 2025-3-23 21:17:17 | 只看該作者
,Teichmüller Spaces,In this chapter, . will denote a compact orientable two-dimensional manifold; for brevity we shall refer to such a . as a surface. If . has been given a conformal structure ., then the resulting Riemann surface will be denoted by (., .). We shall suppose that the genus of . at least two.
14#
發(fā)表于 2025-3-24 01:29:35 | 只看該作者
15#
發(fā)表于 2025-3-24 04:05:16 | 只看該作者
16#
發(fā)表于 2025-3-24 09:25:39 | 只看該作者
Zusammenfassende Betrachtung und Diskussion,tubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQ% dacaWGvbGaeyOKH4QaamOvaaaa!3B3F!is called a (coordinate) chart.
17#
發(fā)表于 2025-3-24 12:46:14 | 只看該作者
Topological Foundations,tubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzaiaacQ% dacaWGvbGaeyOKH4QaamOvaaaa!3B3F!is called a (coordinate) chart.
18#
發(fā)表于 2025-3-24 16:34:43 | 只看該作者
19#
發(fā)表于 2025-3-24 22:09:02 | 只看該作者
Textbook 20022nd editionluding an introduction to Teichmüller theory. The analytic approach is likewise new as it is based on the theory of harmonic maps. For this new edition, the author has expanded and rewritten several sections to include additional material and to improve the presentation.
20#
發(fā)表于 2025-3-24 23:51:37 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-1 15:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
岚皋县| 介休市| 左贡县| 屏南县| 竹溪县| 新化县| 中牟县| 宁强县| 澳门| 娱乐| 高州市| 合作市| 台北县| 桂林市| 永登县| 手机| 本溪市| 松阳县| 河间市| 永州市| 漳州市| 太保市| 莲花县| 红桥区| 酉阳| 洛扎县| 祁东县| 西贡区| 无棣县| 隆化县| 白朗县| 宜君县| 五峰| 固安县| 海宁市| 迁安市| 峨眉山市| 大丰市| 西乌珠穆沁旗| 堆龙德庆县| 南京市|