找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Compact Complex Surfaces; Wolf P. Barth,Klaus Hulek,Antonius Ven Book 2004Latest edition Springer-Verlag Berlin Heidelberg 2004

[復(fù)制鏈接]
樓主: 脾氣好
31#
發(fā)表于 2025-3-26 23:30:50 | 只看該作者
32#
發(fā)表于 2025-3-27 03:09:42 | 只看該作者
33#
發(fā)表于 2025-3-27 08:55:24 | 只看該作者
0071-1136 ry only by way of examples. Of course we use the opportunity to correct some minor mistakes, which we ether have discovered ourselves or which were communicated to us by careful readers to whom978-3-642-57738-3978-3-642-57739-0Series ISSN 0071-1136 Series E-ISSN 2197-5655
34#
發(fā)表于 2025-3-27 11:21:39 | 只看該作者
35#
發(fā)表于 2025-3-27 13:45:48 | 只看該作者
Curves on Surfaces,ve on a surface and is treated in Sects. 1–6. The second theme, developed in Sects. 7–8 is embedded resolution of singularities of curves and the application to the so-called simple singularities of curves.
36#
發(fā)表于 2025-3-27 20:05:23 | 只看該作者
37#
發(fā)表于 2025-3-28 00:44:27 | 只看該作者
Some General Properties of Surfaces,n compact surfaces. The main point is that for surfaces the Fr?hlicher spectral sequence always degenerates. Combining the consequences of this fact with the topological index theorem we find, following Kodaira, relations between topological and analytical invariants which are crucial in handling no
38#
發(fā)表于 2025-3-28 05:30:56 | 只看該作者
39#
發(fā)表于 2025-3-28 09:35:59 | 只看該作者
40#
發(fā)表于 2025-3-28 10:28:48 | 只看該作者
K3-Surfaces and Enriques Surfaces, main results in Sect. 2. In Chapt. IV, Sect. 3 we saw that K 3- surfaces are K?hler, a fact we use from the start. The main tool for studying moduli of K 3- surfaces is the period map and we describe these moduli spaces in terms of the corresponding period domains. This is done in Sect. 6–14 after
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 05:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
芜湖市| 平远县| 永济市| 盐亭县| 房山区| 阜新市| 邹平县| 宁晋县| 安岳县| 淅川县| 泊头市| 黑水县| 濉溪县| 屏东市| 西充县| 扎兰屯市| 合作市| 涪陵区| 江源县| 湄潭县| 睢宁县| 沙洋县| 东山县| 镇巴县| 神池县| 海兴县| 闽侯县| 汉源县| 苏尼特右旗| 尼木县| 太仆寺旗| 利津县| 兴义市| 色达县| 静海县| 扬州市| 谷城县| 山东省| 彭山县| 高安市| 台前县|