找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Commutative Semigroups; P. A. Grillet Book 2001 Springer Science+Business Media Dordrecht 2001 DEX.Finite.Lattice.cohomology.commutative p

[復(fù)制鏈接]
樓主: 忠誠
41#
發(fā)表于 2025-3-28 15:22:06 | 只看該作者
Lebensphasen: Kindheit, Jugend, Alterral features including archimedean components, subdirect decompositions, .-classes, and extended Schützenberger functors. Its relationship to extension groups is less obvious and is shown in Section XIII.2. A similar construction was obtained by the author for finite congruences [1996C], then generalized to complete group-free congruences [2001C].
42#
發(fā)表于 2025-3-28 20:59:35 | 只看該作者
43#
發(fā)表于 2025-3-29 01:30:44 | 只看該作者
44#
發(fā)表于 2025-3-29 06:30:24 | 只看該作者
45#
發(fā)表于 2025-3-29 07:34:06 | 只看該作者
46#
發(fā)表于 2025-3-29 12:11:02 | 只看該作者
Other Resultss which are not covered by other chapters. As noted in the Preface, some subjects have been omitted: partially ordered semigroups; varieties and pseudovarieties; factorization theory; and semigroup rings.
47#
發(fā)表于 2025-3-29 19:37:36 | 只看該作者
Nilsemigroups]; a shorter account is given in Grillet [1995]. Unlike previous constructions for these semigroups, this is a global construction with a very geometric character, in which nilmonoids are obtained as quotient of free commutative monoids by suitable congruences. It accounts well for various structura
48#
發(fā)表于 2025-3-29 19:59:23 | 只看該作者
Group-Free Semigroupsare a particular case. This construction bypasses the difficulties, noted earlier, in reassembling archimedean components and Ponizovsky factors, and accounts well for the main structural features of these semigroups (idempotents, ?-classes, archimedean components, and Ponizovsky factors); its relat
49#
發(fā)表于 2025-3-30 01:46:39 | 只看該作者
Subcomplete Semigroupss, subelementary semigroups, and finitely generated semigroups are particular cases. In particular, this constructs all congruences on finitely generated free commutative monoids. The construction uses Ponizovsky families to generalize the results in Chapter X and relates smoothly to related structu
50#
發(fā)表于 2025-3-30 07:00:05 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 04:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安溪县| 蒙阴县| 德格县| 淮阳县| 佛坪县| 东光县| 曲阳县| 岑巩县| 临泽县| 宁河县| 尖扎县| 永春县| 平泉县| 襄城县| 寻甸| 长寿区| 邛崃市| 广昌县| 云安县| 景泰县| 赣州市| 郴州市| 茶陵县| 凤庆县| 肃宁县| 东安县| 抚宁县| 舞钢市| 儋州市| 乌鲁木齐县| 兴安盟| 武威市| 鹤庆县| 定边县| 维西| 凤庆县| 罗田县| 阳江市| 大埔县| 宁河县| 弥渡县|