找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Commutative Algebra; Expository Papers De Irena Peeva Book 2013 Springer Science+Business Media New York 2013 Castelnuovo-Mumford regularit

[復(fù)制鏈接]
21#
發(fā)表于 2025-3-25 06:51:35 | 只看該作者
22#
發(fā)表于 2025-3-25 09:11:30 | 只看該作者
http://image.papertrans.cn/c/image/230752.jpg
23#
發(fā)表于 2025-3-25 11:47:26 | 只看該作者
24#
發(fā)表于 2025-3-25 16:34:17 | 只看該作者
25#
發(fā)表于 2025-3-25 23:51:47 | 只看該作者
Changing Attitudes to Delinquency K-algebras R whose residue field K has a linear free resolution as an R-module. The Castelnuovo-Mumford regularity is, after Krull dimension and multiplicity, perhaps the most important invariant of a finitely generated graded module M, as it controls the vanishing of both syzygies and the local co
26#
發(fā)表于 2025-3-26 03:08:02 | 只看該作者
27#
發(fā)表于 2025-3-26 08:09:00 | 只看該作者
Mary Buckley (Lecturer in Politics)s. However, any algebraist contemplating the question, “on what locus of prime ideals in Spec(R) does an element e in a module E generate a free summand?”, has in fact encountered the concept of an order ideal. In the account on order ideals and their applications in this paper, it is our intent to
28#
發(fā)表于 2025-3-26 10:08:28 | 只看該作者
29#
發(fā)表于 2025-3-26 15:18:30 | 只看該作者
Soviet Social Scientists Talkingscussed. These include some problems that, historically, motivated the development of the theory. One of these is the theorem that rings of invariants of linearly reductive groups acting on regular rings are Cohen-Macaulay, including normal rings generated by monomials. Another is the characterizati
30#
發(fā)表于 2025-3-26 18:22:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 07:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泾川县| 萨嘎县| 桐城市| 五峰| 比如县| 永州市| 崇义县| 建宁县| 新平| 鲁甸县| 泽州县| 贵州省| 宁乡县| 忻州市| 龙州县| 高邮市| 绥德县| 玉田县| 古丈县| 敖汉旗| 宁阳县| 蓝田县| 杭锦旗| 扎赉特旗| 宁强县| 庆安县| 象州县| 五家渠市| 山东省| 电白县| 贡觉县| 陆川县| 毕节市| 江川县| 留坝县| 酒泉市| 普格县| 资中县| 宝兴县| 云阳县| 从江县|