找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Commutative Algebra; with a View Toward A David Eisenbud Textbook 1995 Springer Science+Business Media New York 1995 Algebraic Geometry.alg

[復(fù)制鏈接]
樓主: 女孩
11#
發(fā)表于 2025-3-23 10:59:27 | 只看該作者
https://doi.org/10.1057/9780230373136forth. The commutative algebra of codimension one is correspondingly rich. In this chapter we digress from the presentation of dimension theory and use the results of Chapters 9 and 10 to analyze some codimension-1 phenomena. In particular, we shall study “invertible” modules; give a criterion for a
12#
發(fā)表于 2025-3-23 17:01:30 | 只看該作者
13#
發(fā)表于 2025-3-23 20:37:10 | 只看該作者
Studies in Soviet History and Society, how do the “fibers” . ?. .(.) vary as we vary the prime . of .? If . is flat over ., then as we have seen, there is some sense in which the fibers vary continuously. The main result below, Grothendieck’s generic freeness lemma, a consequence of the Noether normalization theorem, implies that if .
14#
發(fā)表于 2025-3-24 00:03:42 | 只看該作者
Graduate Texts in Mathematicshttp://image.papertrans.cn/c/image/230751.jpg
15#
發(fā)表于 2025-3-24 04:42:23 | 只看該作者
Wesley T. Huntress Jr.,Mikhail Ya. MarovIt has seemed to me for a long time that commutative algebra is best practiced with knowledge of the geometric ideas that played a great role in its formation: in short, with a view toward algebraic geometry.
16#
發(fā)表于 2025-3-24 09:20:24 | 只看該作者
Wesley T. Huntress Jr.,Mikhail Ya. MarovFor the sake of establishing a common language, this chapter introduces some notation and elementary definitions such as would appear in many undergraduate algebra courses.
17#
發(fā)表于 2025-3-24 12:12:17 | 只看該作者
18#
發(fā)表于 2025-3-24 16:50:19 | 只看該作者
Studies in Soviet History and SocietyWe shall work throughout this chapter with a polynomial ring . = .[., …, .] over a field .. The elements of . will be called .. All .-modules mentioned will be assumed finitely generated.
19#
發(fā)表于 2025-3-24 20:54:14 | 只看該作者
IntroductionIt has seemed to me for a long time that commutative algebra is best practiced with knowledge of the geometric ideas that played a great role in its formation: in short, with a view toward algebraic geometry.
20#
發(fā)表于 2025-3-25 00:18:34 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 22:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
革吉县| 巩义市| 杭锦旗| 大悟县| 偃师市| 金门县| 霍林郭勒市| 沂南县| 巍山| 静乐县| 左权县| 临夏县| 井研县| 江山市| 咸阳市| 临安市| 策勒县| 华容县| 浪卡子县| 呼伦贝尔市| 赞皇县| 聂拉木县| 兴化市| 石嘴山市| 汕尾市| 永和县| 溆浦县| 全南县| 都江堰市| 黄石市| 临澧县| 合江县| 蒲城县| 新竹县| 清水河县| 兴义市| 长沙县| 临澧县| 双峰县| 松溪县| 肇庆市|