找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Community Search over Big Graphs; Xin Huang,Laks V. S. Lakshmanan,Jianliang Xu Book 2019 Springer Nature Switzerland AG 2019

[復(fù)制鏈接]
查看: 14745|回復(fù): 41
樓主
發(fā)表于 2025-3-21 16:07:06 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Community Search over Big Graphs
編輯Xin Huang,Laks V. S. Lakshmanan,Jianliang Xu
視頻videohttp://file.papertrans.cn/231/230700/230700.mp4
叢書名稱Synthesis Lectures on Data Management
圖書封面Titlebook: Community Search over Big Graphs;  Xin Huang,Laks V. S. Lakshmanan,Jianliang Xu Book 2019 Springer Nature Switzerland AG 2019
描述.Communities serve as basic structural building blocks for understanding the organization of many real-world networks, including social, biological, collaboration, and communication networks. Recently, community search over graphs has attracted significantly increasing attention, from small, simple, and static graphs to big, evolving, attributed, and location-based graphs...In this book, we first review the basic concepts of networks, communities, and various kinds of dense subgraph models. We then survey the state of the art in community search techniques on various kinds of networks across different application areas. Specifically, we discuss cohesive community search, attributed community search, social circle discovery, and geo-social group search. We highlight the challenges posed by different community search problems. We present their motivations, principles, methodologies, algorithms, and applications, and provide a comprehensive comparison of the existing techniques. This book finally concludes by listing publicly available real-world datasets and useful tools for facilitating further research, and by offering further readings and future directions of research in this impo
出版日期Book 2019
版次1
doihttps://doi.org/10.1007/978-3-031-01874-9
isbn_softcover978-3-031-00746-0
isbn_ebook978-3-031-01874-9Series ISSN 2153-5418 Series E-ISSN 2153-5426
issn_series 2153-5418
copyrightSpringer Nature Switzerland AG 2019
The information of publication is updating

書目名稱Community Search over Big Graphs影響因子(影響力)




書目名稱Community Search over Big Graphs影響因子(影響力)學(xué)科排名




書目名稱Community Search over Big Graphs網(wǎng)絡(luò)公開度




書目名稱Community Search over Big Graphs網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Community Search over Big Graphs被引頻次




書目名稱Community Search over Big Graphs被引頻次學(xué)科排名




書目名稱Community Search over Big Graphs年度引用




書目名稱Community Search over Big Graphs年度引用學(xué)科排名




書目名稱Community Search over Big Graphs讀者反饋




書目名稱Community Search over Big Graphs讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:22:20 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:27:29 | 只看該作者
地板
發(fā)表于 2025-3-22 05:52:59 | 只看該作者
Interlude: Intercultural Remixes,th certain relationships. Massive networks can often be understood and analyzed in terms of these communities [165]. In the literature, several different models for cohesive (dense) subgraphs and communities have been proposed, which we will discuss in Chapters 3–6. Specifically, dense subgraphs of
5#
發(fā)表于 2025-3-22 12:15:32 | 只看該作者
6#
發(fā)表于 2025-3-22 15:15:36 | 只看該作者
Birmingham’s Postindustrial Metalch on a simple graph aims to find densely connected communities containing all query nodes. In applications such as analysis of protein protein interaction (PPI) networks, citation graphs, and collaboration networks, nodes tend to have attributes. Most simple structural community search algorithms i
7#
發(fā)表于 2025-3-22 17:05:56 | 只看該作者
Brett Lashua,Stephen Wagg,Karl Spracklenwork induced only by his or her friends is called an ego-network. Online social networks allow users to manually categorize their friends into different social circles within their ego-networks (e.g., “circles” on Google+) [117, 170]. The task of social circle discovery is to automatically identify
8#
發(fā)表于 2025-3-22 22:37:26 | 只看該作者
9#
發(fā)表于 2025-3-23 02:35:39 | 只看該作者
10#
發(fā)表于 2025-3-23 06:43:15 | 只看該作者
Brett Lashua,Stephen Wagg,M. Selim YavuzThis chapter first lists the community search models that are not detailed in the previous chapters. We then conclude the book by discussing future directions and open problems for further research in community search over large graphs.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 10:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
福安市| 灵山县| 西和县| 五峰| 吉木萨尔县| 辽阳市| 龙里县| 团风县| 西宁市| 洮南市| 溧水县| 肥东县| 汕尾市| 乌拉特前旗| 武陟县| 饶阳县| 壤塘县| 凉城县| 乌鲁木齐市| 林州市| 裕民县| 绥宁县| 罗甸县| 泾源县| 平湖市| 通山县| 梁山县| 开江县| 和田县| 来宾市| 老河口市| 永寿县| 黎城县| 洛阳市| 宁陵县| 宁津县| 星座| 福建省| 肇东市| 和林格尔县| 芦溪县|