找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Communications, Signal Processing, and Systems; Proceedings of the 2 Qilian Liang,Xin Liu,Baoju Zhang Conference proceedings 2020 Springer

[復(fù)制鏈接]
樓主: 貪吃的人
41#
發(fā)表于 2025-3-28 18:40:21 | 只看該作者
Based on Deep Learning CSI Recovery for Uplink Massive Device Dynamic Internet of Thinggorithm suitable for the sparse structure and obtain more accurate channel state information of dynamic IoT networks, though these numerical results, under the premise of guaranteeing performance, can greatly reduce the complexity of the algorithm.
42#
發(fā)表于 2025-3-28 19:31:03 | 只看該作者
Imbalanced Data Classification Method Based on Ensemble Learning result is generated by weighted voting. In the experiments, six UCI datasets are tested, and the experimental results show that the method is highly representative and can effectively improve the classification ability.
43#
發(fā)表于 2025-3-28 23:37:10 | 只看該作者
Bayesian Method-Based Learning Automata for Two-Player Stochastic Games with Incomplete Informationree property indicates that a set of parameters in the scheme can be universally applicable for all configurations of games. Besides, simulation results demonstrate that BPFLA has much faster convergence rate than traditional schemes using games of learning automata with equal or higher accuracy.
44#
發(fā)表于 2025-3-29 03:14:42 | 只看該作者
A Learning Automata-Based Compression Scheme for Convolutional Neural Networkete insignificant convolution kernels according to the actual requirements. According to the results of experiments, the proposed scheduling method can effectively compress the number of convolutional kernels at the expense of losing weak classification accuracy.
45#
發(fā)表于 2025-3-29 07:35:48 | 只看該作者
46#
發(fā)表于 2025-3-29 13:30:06 | 只看該作者
A Multi-label Scene Categorization Model Based on Deep Convolutional Neural Networksification model utilizing deep convolutional neural network (CNN) inspired by Inception-v4 [.] on this basis. Experiments demonstrate that the model proposed achieves an accuracy of 94.125% on the test set and thus can be deployed into practical intelligent surveillance scenarios.
47#
發(fā)表于 2025-3-29 18:13:25 | 只看該作者
48#
發(fā)表于 2025-3-29 23:36:27 | 只看該作者
49#
發(fā)表于 2025-3-30 03:48:23 | 只看該作者
Astronomy and Astrophysics Librarysome special applications such as in reimbursement of value-added tax (VAT) invoices. This paper proposes two OCR techniques by using deep convolutional neural network (CNN) and residual network (ResNet), respectively. According to our test dataset, the formerly proposed techniques can reach up to 97.08%, while the latter can increase to 99.38%.
50#
發(fā)表于 2025-3-30 06:59:20 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 21:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
红安县| 梁河县| 安丘市| 图片| 奎屯市| 衢州市| 合川市| 绥宁县| 济南市| 青浦区| 锡林浩特市| 通河县| 华安县| 佛教| 惠州市| 榆社县| 贺州市| 珲春市| 平乡县| 钟山县| 澳门| 隆安县| 卫辉市| 墨竹工卡县| 东丽区| 宁化县| 突泉县| 百色市| 双桥区| 迭部县| 库伦旗| 于都县| 兴仁县| 杭州市| 钦州市| 东莞市| 虞城县| 敦化市| 涡阳县| 龙里县| 望谟县|