找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorics, Graph Theory and Computing; SEICCGTC 2020, Boca Frederick Hoffman Conference proceedings 2022 The Editor(s) (if applicable)

[復制鏈接]
樓主: Jackson
51#
發(fā)表于 2025-3-30 09:13:15 | 只看該作者
52#
發(fā)表于 2025-3-30 13:00:36 | 只看該作者
https://doi.org/10.1007/978-3-030-13031-2teger such that ., and . be a minimum integer such that ., and . be an .-regular, .-edge-connected graph of odd order. Then, there is some . such that . has a .-factor. Moreover, if ., then we can replace .-edge-connected with 2-edge-connected.
53#
發(fā)表于 2025-3-30 17:09:35 | 只看該作者
54#
發(fā)表于 2025-3-31 00:11:58 | 只看該作者
,Str?mende Flüssigkeiten und Gase,mination theory of graphs. To effectively apply the methods developed here, one needs to have good estimates of the degeneracy of a hypergraph and its variation the reduced degeneracy which is introduced here.
55#
發(fā)表于 2025-3-31 04:00:37 | 只看該作者
56#
發(fā)表于 2025-3-31 05:53:02 | 只看該作者
Constructing Clifford Algebras for Windmill and Dutch Windmill Graphs; A New Proof of the Friendshi. adjoined at one common vertex, then apply this algebraic theory to the class of 3-cycle graphs . known as friendship graphs. Specifically, we will use the algebra . to give a new proof of the fact that those simple graphs which posses the friendship property are precisely the friendship graphs.
57#
發(fā)表于 2025-3-31 13:15:20 | 只看該作者
Bounding the Trace Function of a Hypergraph with Applications,mination theory of graphs. To effectively apply the methods developed here, one needs to have good estimates of the degeneracy of a hypergraph and its variation the reduced degeneracy which is introduced here.
58#
發(fā)表于 2025-3-31 14:11:12 | 只看該作者
59#
發(fā)表于 2025-3-31 21:25:18 | 只看該作者
60#
發(fā)表于 2025-3-31 22:28:26 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 17:10
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
定结县| 汾西县| 仙游县| 连州市| 太和县| 沙湾县| 平罗县| 申扎县| 铅山县| 麻阳| 北安市| 巴青县| 宁都县| 拉孜县| 通化县| 峨山| 乡宁县| 资溪县| 靖远县| 禹城市| 邻水| 高台县| 安国市| 彰武县| 上高县| 青岛市| 吴川市| 岳池县| 民勤县| 兴义市| 临潭县| 台中市| 安泽县| 元江| 清涧县| 大厂| 凤冈县| 巧家县| 六盘水市| 榆林市| 玛曲县|