找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorics, Graph Theory and Computing; SEICCGTC 2020, Boca Frederick Hoffman Conference proceedings 2022 The Editor(s) (if applicable)

[復(fù)制鏈接]
樓主: Jackson
51#
發(fā)表于 2025-3-30 09:13:15 | 只看該作者
52#
發(fā)表于 2025-3-30 13:00:36 | 只看該作者
https://doi.org/10.1007/978-3-030-13031-2teger such that ., and . be a minimum integer such that ., and . be an .-regular, .-edge-connected graph of odd order. Then, there is some . such that . has a .-factor. Moreover, if ., then we can replace .-edge-connected with 2-edge-connected.
53#
發(fā)表于 2025-3-30 17:09:35 | 只看該作者
54#
發(fā)表于 2025-3-31 00:11:58 | 只看該作者
,Str?mende Flüssigkeiten und Gase,mination theory of graphs. To effectively apply the methods developed here, one needs to have good estimates of the degeneracy of a hypergraph and its variation the reduced degeneracy which is introduced here.
55#
發(fā)表于 2025-3-31 04:00:37 | 只看該作者
56#
發(fā)表于 2025-3-31 05:53:02 | 只看該作者
Constructing Clifford Algebras for Windmill and Dutch Windmill Graphs; A New Proof of the Friendshi. adjoined at one common vertex, then apply this algebraic theory to the class of 3-cycle graphs . known as friendship graphs. Specifically, we will use the algebra . to give a new proof of the fact that those simple graphs which posses the friendship property are precisely the friendship graphs.
57#
發(fā)表于 2025-3-31 13:15:20 | 只看該作者
Bounding the Trace Function of a Hypergraph with Applications,mination theory of graphs. To effectively apply the methods developed here, one needs to have good estimates of the degeneracy of a hypergraph and its variation the reduced degeneracy which is introduced here.
58#
發(fā)表于 2025-3-31 14:11:12 | 只看該作者
59#
發(fā)表于 2025-3-31 21:25:18 | 只看該作者
60#
發(fā)表于 2025-3-31 22:28:26 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 22:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
包头市| 策勒县| 江都市| 喜德县| 高平市| 萝北县| 景宁| 图木舒克市| 宝清县| 夹江县| 沭阳县| 双柏县| 灌南县| 平邑县| 文水县| 夏津县| 久治县| 二连浩特市| 鸡泽县| 新安县| 建水县| 广灵县| 嘉鱼县| 榆中县| 安西县| 焉耆| 武邑县| 武胜县| 甘德县| 皋兰县| 卓尼县| 台湾省| 阿拉尔市| 社旗县| 茶陵县| 武隆县| 望谟县| 正宁县| 马公市| 天津市| 顺平县|