找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorics on Words; 13th International C Thierry Lecroq,Svetlana Puzynina Conference proceedings 2021 Springer Nature Switzerland AG 20

[復(fù)制鏈接]
樓主: 戰(zhàn)神
51#
發(fā)表于 2025-3-30 10:15:36 | 只看該作者
52#
發(fā)表于 2025-3-30 16:26:18 | 只看該作者
Hadi Khabbaz,Yang Xiao,Jia-Ruey Changange Automaton Matcher, which turns out to be very fast in many practical cases. Despite our algorithm has a quadratic worst-case time complexity, experimental results show that it obtains in most cases the best running times when compared against the most effective automata based algorithms. In the
53#
發(fā)表于 2025-3-30 18:38:56 | 只看該作者
54#
發(fā)表于 2025-3-30 21:09:45 | 只看該作者
Continuants with Equal Values, a Combinatorial Approach, as a function defined on the set of all finite words on the alphabet . with values in the positive integers. Given a word . with . we define its multiplicity . as the number of times the value .(.) is assumed in the Abelian class . consisting of all permutations of the word .. We prove that there i
55#
發(fā)表于 2025-3-31 01:01:31 | 只看該作者
56#
發(fā)表于 2025-3-31 08:01:08 | 只看該作者
57#
發(fā)表于 2025-3-31 12:41:32 | 只看該作者
String Theories Involving Regular Membership Predicates: From Practice to Theory and Back,ich can be applied in this context, especially for real-world cases. Designing an algorithm for the (generally undecidable) satisfiability problem for systems of string constraints requires a thorough understanding of the structure of constraints present in the targeted cases. In this paper, we inve
58#
發(fā)表于 2025-3-31 16:56:41 | 只看該作者
Binary Cyclotomic Polynomials: Representation via Words and Algorithms,n of their order, and the binary case is thus the first nontrivial case. This paper sees the vector of coefficients of the polynomial as a word on a ternary alphabet .. It designs an efficient algorithm that computes a compact representation of this word. This algorithm is of linear time with respec
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-2-1 02:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
屯昌县| 宁阳县| 鄯善县| 贡嘎县| 伊通| 江油市| 全椒县| 朝阳县| 泰兴市| 巴南区| 民权县| 聂荣县| 肥城市| 上饶县| 三台县| 波密县| 西乌珠穆沁旗| 象州县| 卫辉市| 安多县| 新营市| 瓦房店市| 黄浦区| 长宁区| 手机| 营山县| 杭锦后旗| 中江县| 武平县| 田东县| 华宁县| 沾益县| 祁阳县| 南昌市| 合肥市| 福鼎市| 满洲里市| 大理市| 定安县| 龙泉市| 乌审旗|