找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorics and Complexity of Partition Functions; Alexander Barvinok Book 2016 Springer International Publishing AG 2016 algorithms.com

[復(fù)制鏈接]
查看: 53343|回復(fù): 42
樓主
發(fā)表于 2025-3-21 18:17:25 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Combinatorics and Complexity of Partition Functions
編輯Alexander Barvinok
視頻videohttp://file.papertrans.cn/231/230042/230042.mp4
概述Contains an exposition of recent results.Demonstrates a unified approach to hard algorithmic problems.Provides an easy to read introduction to statistical physics phenomena.Includes supplementary mate
叢書名稱Algorithms and Combinatorics
圖書封面Titlebook: Combinatorics and Complexity of Partition Functions;  Alexander Barvinok Book 2016 Springer International Publishing AG 2016 algorithms.com
描述.Partition functions arise in combinatorics and related problems of statistical physics as they encode in a succinct way the combinatorial? structure of complicated systems. The main focus of the book is on efficient ways to compute (approximate) various partition functions, such as permanents, hafnians and their higher-dimensional versions, graph and hypergraph matching polynomials, the independence polynomial of a graph and partition functions enumerating 0-1 and integer points in polyhedra, which allows one to make algorithmic advances in otherwise intractable problems.?.The book unifies various, often quite recent, results scattered in the literature, concentrating on the three main approaches: scaling, interpolation and correlation decay.?The prerequisites include moderate amounts of real and complex analysis and linear algebra, making the book accessible to advanced math and physics undergraduates.?.
出版日期Book 2016
關(guān)鍵詞algorithms; complexity; partition function; permanent; mathing polynomial; independence polynomial; graph
版次1
doihttps://doi.org/10.1007/978-3-319-51829-9
isbn_softcover978-3-319-84751-1
isbn_ebook978-3-319-51829-9Series ISSN 0937-5511 Series E-ISSN 2197-6783
issn_series 0937-5511
copyrightSpringer International Publishing AG 2016
The information of publication is updating

書目名稱Combinatorics and Complexity of Partition Functions影響因子(影響力)




書目名稱Combinatorics and Complexity of Partition Functions影響因子(影響力)學(xué)科排名




書目名稱Combinatorics and Complexity of Partition Functions網(wǎng)絡(luò)公開度




書目名稱Combinatorics and Complexity of Partition Functions網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Combinatorics and Complexity of Partition Functions被引頻次




書目名稱Combinatorics and Complexity of Partition Functions被引頻次學(xué)科排名




書目名稱Combinatorics and Complexity of Partition Functions年度引用




書目名稱Combinatorics and Complexity of Partition Functions年度引用學(xué)科排名




書目名稱Combinatorics and Complexity of Partition Functions讀者反饋




書目名稱Combinatorics and Complexity of Partition Functions讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:05:29 | 只看該作者
Smart Systems Integration and Simulationcs as they compute certain integrals and to computer science as they occupy a special place in the computational complexity hierarchy. This is our first example of a partition function and we demonstrate in detail how various approaches work. Connections with .-stable polynomials lead, in particular
板凳
發(fā)表于 2025-3-22 03:08:37 | 只看該作者
地板
發(fā)表于 2025-3-22 08:32:57 | 只看該作者
5#
發(fā)表于 2025-3-22 09:56:38 | 只看該作者
Smart E-Health Home Supervision Systemsolynomials, the van der Waerden and Bregman–Minc bounds) are used. Geometrically, with each integer point of a polyhedron in ., we associate a monomial in . real variables and the partition function is just the sum of monomials over the integer points in the polyhedron.
6#
發(fā)表于 2025-3-22 14:46:27 | 只看該作者
https://doi.org/10.1007/978-3-319-51829-9algorithms; complexity; partition function; permanent; mathing polynomial; independence polynomial; graph
7#
發(fā)表于 2025-3-22 18:55:23 | 只看該作者
978-3-319-84751-1Springer International Publishing AG 2016
8#
發(fā)表于 2025-3-22 21:14:39 | 只看該作者
Combinatorics and Complexity of Partition Functions978-3-319-51829-9Series ISSN 0937-5511 Series E-ISSN 2197-6783
9#
發(fā)表于 2025-3-23 03:06:54 | 只看該作者
Smart E-Health Home Supervision Systemsolynomials, the van der Waerden and Bregman–Minc bounds) are used. Geometrically, with each integer point of a polyhedron in ., we associate a monomial in . real variables and the partition function is just the sum of monomials over the integer points in the polyhedron.
10#
發(fā)表于 2025-3-23 06:27:25 | 只看該作者
Partition Functions of Integer Flows,olynomials, the van der Waerden and Bregman–Minc bounds) are used. Geometrically, with each integer point of a polyhedron in ., we associate a monomial in . real variables and the partition function is just the sum of monomials over the integer points in the polyhedron.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 00:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
杨浦区| 辉南县| 锦州市| 城口县| 通河县| 九台市| 永年县| 札达县| 曲阜市| 澜沧| 封丘县| 邢台市| 河源市| 侯马市| 武定县| 商都县| 顺平县| 兰考县| 宁南县| 棋牌| 威海市| 赞皇县| 乡宁县| 焦作市| 如皋市| 新邵县| 桐梓县| 金昌市| 镇宁| 象山县| 古丈县| 临夏市| 铁岭县| 灵山县| 西峡县| 锡林郭勒盟| 定远县| 颍上县| 无极县| 河津市| 北辰区|