找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial Theory; Martin Aigner Book 1979 Springer-Verlag New York Inc. 1979 Combinatorics.Counting.Finite.Lattice.Permutation.algebra

[復(fù)制鏈接]
樓主: mature
21#
發(fā)表于 2025-3-25 03:48:19 | 只看該作者
Combinatorial Order Theory, properties present in any poset, such as chains, antichains, matchings, etc. Typical problems to be considered are the determination of the minimal number of chains into which a finite poset can be decomposed or the existence of a matching between the points and copoints of a ranked poset. In fact,
22#
發(fā)表于 2025-3-25 09:49:40 | 只看該作者
Polina V. Stognii,Nikolay I. KhokhlovIt seems convenient to list at the outset a few items that will be used throughout the book.
23#
發(fā)表于 2025-3-25 13:41:14 | 只看該作者
24#
發(fā)表于 2025-3-25 16:17:11 | 只看該作者
Preliminaries,It seems convenient to list at the outset a few items that will be used throughout the book.
25#
發(fā)表于 2025-3-25 23:35:20 | 只看該作者
26#
發(fā)表于 2025-3-26 01:06:25 | 只看該作者
Combinatorial Theory978-1-4615-6666-3Series ISSN 0072-7830 Series E-ISSN 2196-9701
27#
發(fā)表于 2025-3-26 05:08:24 | 只看該作者
28#
發(fā)表于 2025-3-26 10:18:48 | 只看該作者
https://doi.org/10.1007/978-3-031-22580-2ds: Linear matroids, binary and regular matroids, graphic and transversal matroids. The emphasis lies here on the characterization of these matroids and on applications to concrete combinatorial problems.
29#
發(fā)表于 2025-3-26 16:07:14 | 只看該作者
Incidence Functions,ions and inversion formulae in an arbitrary poset. Our method of study will be to associate with the poset . an algebraic object called the incidence algebra . (.), and to investigate its structure and subobjects.
30#
發(fā)表于 2025-3-26 18:54:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 23:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
静乐县| 鄂伦春自治旗| 新源县| 兰考县| 独山县| 温泉县| 富顺县| 铁岭县| 巴青县| 清流县| 尚义县| 旺苍县| 沿河| 于都县| 盖州市| 定州市| 巩义市| 西安市| 定南县| 信阳市| 米易县| 个旧市| 盐山县| 海伦市| 临安市| 利津县| 光山县| 调兵山市| 商城县| 东至县| 宁阳县| 天门市| 嘉鱼县| 城口县| 延川县| 三门峡市| 岳阳县| 繁峙县| 且末县| 赫章县| 桂平市|