找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial Theory; Martin Aigner Book 1979 Springer-Verlag New York Inc. 1979 Combinatorics.Counting.Finite.Lattice.Permutation.algebra

[復(fù)制鏈接]
樓主: mature
21#
發(fā)表于 2025-3-25 03:48:19 | 只看該作者
Combinatorial Order Theory, properties present in any poset, such as chains, antichains, matchings, etc. Typical problems to be considered are the determination of the minimal number of chains into which a finite poset can be decomposed or the existence of a matching between the points and copoints of a ranked poset. In fact,
22#
發(fā)表于 2025-3-25 09:49:40 | 只看該作者
Polina V. Stognii,Nikolay I. KhokhlovIt seems convenient to list at the outset a few items that will be used throughout the book.
23#
發(fā)表于 2025-3-25 13:41:14 | 只看該作者
24#
發(fā)表于 2025-3-25 16:17:11 | 只看該作者
Preliminaries,It seems convenient to list at the outset a few items that will be used throughout the book.
25#
發(fā)表于 2025-3-25 23:35:20 | 只看該作者
26#
發(fā)表于 2025-3-26 01:06:25 | 只看該作者
Combinatorial Theory978-1-4615-6666-3Series ISSN 0072-7830 Series E-ISSN 2196-9701
27#
發(fā)表于 2025-3-26 05:08:24 | 只看該作者
28#
發(fā)表于 2025-3-26 10:18:48 | 只看該作者
https://doi.org/10.1007/978-3-031-22580-2ds: Linear matroids, binary and regular matroids, graphic and transversal matroids. The emphasis lies here on the characterization of these matroids and on applications to concrete combinatorial problems.
29#
發(fā)表于 2025-3-26 16:07:14 | 只看該作者
Incidence Functions,ions and inversion formulae in an arbitrary poset. Our method of study will be to associate with the poset . an algebraic object called the incidence algebra . (.), and to investigate its structure and subobjects.
30#
發(fā)表于 2025-3-26 18:54:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 01:48
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
德令哈市| 岗巴县| 庆阳市| 台东县| 阿拉善右旗| 灵石县| 德兴市| 十堰市| 黔西| 明溪县| 和田市| 潍坊市| 闽侯县| 莲花县| 四子王旗| 兖州市| 临颍县| 浠水县| 平山县| 林口县| 安远县| 广饶县| 宁国市| 桦川县| 玛沁县| 乌兰察布市| 宝清县| 慈溪市| 黔南| 东乌珠穆沁旗| 子洲县| 青州市| 北碚区| 灵璧县| 兴安县| 白山市| 凤翔县| 南溪县| 七台河市| 西林县| 望奎县|