找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial Optimization and Applications; 7th International Co Peter Widmayer,Yinfeng Xu,Binhai Zhu Conference proceedings 2013 Springer

[復(fù)制鏈接]
樓主: charity
31#
發(fā)表于 2025-3-26 23:10:34 | 只看該作者
32#
發(fā)表于 2025-3-27 03:02:37 | 只看該作者
Ashwin Kumar Balaji,Prashant Kumar Soori.?+?.)?≥?.(.) and show that .(.?+?.)???.(.) can be arbitrarily large. Lastly, we furnish a Nordhaus-Gaddum-type result: Let . and . (the complement of .) both be connected graphs of order .?≥?4; it is readily seen that . if and only if .?=?4; further, we characterize unicyclic graphs . attaining ..
33#
發(fā)表于 2025-3-27 08:14:28 | 只看該作者
Smart Cities of Today and Tomorrowe first work that studies the problem of mining hidden links from the aspect of Nash Equilibrium. Eventually we confirm the superiority of our approach from extensive experiments over real-world social networks.
34#
發(fā)表于 2025-3-27 10:42:45 | 只看該作者
The Fractional Strong Metric Dimension of Graphs.?+?.)?≥?.(.) and show that .(.?+?.)???.(.) can be arbitrarily large. Lastly, we furnish a Nordhaus-Gaddum-type result: Let . and . (the complement of .) both be connected graphs of order .?≥?4; it is readily seen that . if and only if .?=?4; further, we characterize unicyclic graphs . attaining ..
35#
發(fā)表于 2025-3-27 15:21:20 | 只看該作者
36#
發(fā)表于 2025-3-27 19:47:25 | 只看該作者
37#
發(fā)表于 2025-3-27 21:55:23 | 只看該作者
38#
發(fā)表于 2025-3-28 04:10:21 | 只看該作者
39#
發(fā)表于 2025-3-28 06:39:07 | 只看該作者
40#
發(fā)表于 2025-3-28 13:26:21 | 只看該作者
https://doi.org/10.1007/978-3-658-38969-71.7356. .. Our algorithm is analyzed by using the measure-and-conquer method. After showing some properties of the problem, we get improvements by introducing a new measure scheme on the structure of reduced graphs.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 04:43
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东乡县| 万源市| 苏尼特右旗| 天津市| 芦山县| 高清| 平远县| 栖霞市| 清丰县| 桃江县| 平远县| 安平县| 兴隆县| 黄平县| 星子县| 林芝县| 连城县| 桓仁| 广安市| 福州市| 喀什市| 株洲县| 民和| 榆中县| 嵊州市| 探索| 文成县| 昌邑市| 盐源县| 沛县| 荣昌县| 南乐县| 江津市| 璧山县| 剑川县| 灵寿县| 长治市| 武平县| 舒城县| 英山县| 古丈县|