找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial Optimization and Applications; 10th International C T-H. Hubert Chan,Minming Li,Lusheng Wang Conference proceedings 2016 Spri

[復制鏈接]
樓主: sulfonylureas
51#
發(fā)表于 2025-3-30 10:01:43 | 只看該作者
52#
發(fā)表于 2025-3-30 16:25:31 | 只看該作者
Smaller Satellites: Bigger Business?ed fixed-cardinality maximization problem . that aims at maximizing the number of equivalence classes induced by a solution set of . vertices. We study the approximation complexity of . on general hypergraphs and on more restricted instances, in particular, neighborhood hypergraphs of graphs.
53#
發(fā)表于 2025-3-30 18:27:15 | 只看該作者
54#
發(fā)表于 2025-3-31 00:31:56 | 只看該作者
55#
發(fā)表于 2025-3-31 04:12:21 | 只看該作者
Smalltalk and Object Orientation algorithm. We moreover study the link between the MESP problem and the notion of laminarity, introduced by V?lkel . [.], corresponding to its restriction to a diameter (. a shortest path of maximum length), and show tight bounds between MESP and laminarity parameters.
56#
發(fā)表于 2025-3-31 07:43:02 | 只看該作者
57#
發(fā)表于 2025-3-31 10:57:20 | 只看該作者
PROBA (Project for On-board Autonomy)arge, and also prove the polynomial-time solvability and computational hardness of its variants with integer constraints. In the second part, we apply our model to the case study of Minabe town in Wakayama prefecture, Japan.
58#
發(fā)表于 2025-3-31 14:18:43 | 只看該作者
59#
發(fā)表于 2025-3-31 19:26:05 | 只看該作者
Vongpaphane Manivong,R. A. Crambhe total dual integrality of system ., as well as those for the (stronger) total unimodularity of matrix . and the (weaker) integrality of polyhedron .. These necessary conditions are shown to be sufficient when restricted to planar graphs. We prove that the three notions of integrality coincide, an
60#
發(fā)表于 2025-4-1 01:24:27 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2026-1-25 06:54
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
屯门区| 台东市| 武川县| 磐安县| 汝州市| 平江县| 阳东县| 法库县| 灵丘县| 武强县| 睢宁县| 新兴县| 始兴县| 南汇区| 武威市| 海安县| 江川县| 嘉定区| 永仁县| 营口市| 炉霍县| 黄大仙区| 原阳县| 马尔康县| 辽中县| 会昌县| 临湘市| 洪雅县| 黔江区| 桓仁| 锡林郭勒盟| 新丰县| 图木舒克市| 达尔| 敦煌市| 呼图壁县| 安远县| 信丰县| 绩溪县| 太和县| 宁都县|