找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial Optimization; Third International Pierre Fouilhoux,Luis Eduardo Neves Gouveia,Vangel Conference proceedings 2014 Springer In

[復(fù)制鏈接]
樓主: FAULT
61#
發(fā)表于 2025-4-1 02:27:08 | 只看該作者
62#
發(fā)表于 2025-4-1 07:41:42 | 只看該作者
Very Special and Difficult Casesm spanning tree is minimum among all graphs .. We study these problems in the . metric, and show that the shortest path problem with neighborhoods is solvable in polynomial time, whereas the minimum spanning tree problem with neighborhoods is .-hard, even if the neighborhood regions are segments.
63#
發(fā)表于 2025-4-1 13:21:31 | 只看該作者
64#
發(fā)表于 2025-4-1 14:48:09 | 只看該作者
Maximum Throughput Network Routing Subject to Fair Flow Allocation,
65#
發(fā)表于 2025-4-1 19:46:16 | 只看該作者
Study of Identifying Code Polyhedra for Some Families of Split Graphs,al graphs like bipartite graphs and split graphs. Hence, a typical line of attack for this problem is to determine minimum identifying codes of special graphs or to provide bounds for their size..In this work we study the associated polyhedra for some families of split graphs: headless spiders and c
66#
發(fā)表于 2025-4-1 23:21:23 | 只看該作者
Parametric Multiroute Flow and Its Application to Robust Network with , Edge Failures,twork flow problems. We show that the function is piecewise hyperbolic, and modify a parametric optimization technique, the ES algorithm, to find this function. The running time of the algorithm is ., when . is a source-sink edge connectivity of our network, . is the number of links, and . is the nu
67#
發(fā)表于 2025-4-2 03:00:37 | 只看該作者
The Dominating Set Polytope via Facility Location,ribe the dominating set polytope for cacti graphs, though its description in the natural node variables dimension has been only partially obtained. Moreover, the inequalities describing this polytope have coefficients in .. This is not the case for the dominating set polytope in the node-variables d
68#
發(fā)表于 2025-4-2 10:41:53 | 只看該作者
69#
發(fā)表于 2025-4-2 12:20:41 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-21 21:54
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泽普县| 乌海市| 松潘县| 秦皇岛市| 丘北县| 沛县| 宁国市| 武宣县| 澄江县| 子长县| 六盘水市| 山西省| 鱼台县| 衡山县| 尚义县| 昆明市| 长岭县| 梁河县| 黄石市| 汉沽区| 浏阳市| 宜兰县| 巴东县| 新宾| 凌源市| 仲巴县| 凉城县| 仙桃市| 大邑县| 出国| 萍乡市| 长葛市| 资阳市| 锦屏县| 托克逊县| 临清市| 长沙市| 南城县| 华蓥市| 山丹县| 盐池县|