找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial Optimization; 7th International Sy Ivana Ljubi?,Francisco Barahona,A. Ridha Mahjoub Conference proceedings 2022 The Editor(s)

[復制鏈接]
樓主: Polk
51#
發(fā)表于 2025-3-30 09:14:44 | 只看該作者
Compressible (Low-Mach) Two-Phase Flows, . of available contiguous frequency slots, and a multiset of traffic demands ., the C-RSA consists in assigning for each traffic demand . a path in . between its origin and destination, and an interval of contiguous frequency slots in . while satisfying some technological constraints, and minimizin
52#
發(fā)表于 2025-3-30 14:26:11 | 只看該作者
Valentina Manente,Silvio Caputoystems. Since multiple top-. lists may be generated by different algorithms to evaluate the same set of entities or system of interest, there is often a need to consolidate this collection of heterogeneous top-. lists to obtain a more robust and coherent list. This work introduces various exact math
53#
發(fā)表于 2025-3-30 17:56:22 | 只看該作者
https://doi.org/10.1007/978-3-030-99962-9ry vectors of a given finite length satisfying certain practical constraints, such as a minimum dwell time or a bound on the number of changes over the entire time horizon. While the former constraint has been investigated polyhedrally, no results seem to exist for the latter, although it arises nat
54#
發(fā)表于 2025-3-30 20:57:37 | 只看該作者
Rémi Ardiet,Claude Sobry,Ricardo Melonumber . is the maximum number of 1s no two of which are in a same row, column and a . submatrix of all 1s. In this paper, we continue Lubiw’s study of firm matrices. . is said to be firm if . and this equality holds for all its submatrices. We show that the stronger concept of superfirmness of . is
55#
發(fā)表于 2025-3-31 02:21:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-28 00:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
宁化县| 资阳市| 哈密市| 青田县| 乡城县| 罗城| 安泽县| 察雅县| 汕头市| 东安县| 武夷山市| 靖江市| 娱乐| 邓州市| 宜丰县| 宜都市| 兖州市| 桦甸市| 错那县| 南昌市| 尼木县| 英吉沙县| 宣威市| 华容县| 北宁市| 镇康县| 武陟县| 塘沽区| 平凉市| 铅山县| 贞丰县| 右玉县| 中牟县| 泽普县| 宁城县| 乐安县| 郓城县| 五莲县| 哈密市| 湟源县| 教育|