找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial Matrix Theory; Richard A. Brualdi,ángeles Carmona,Dragan Stevanov Textbook 2018 Springer International Publishing AG, part o

[復(fù)制鏈接]
樓主: Boldfaced
11#
發(fā)表于 2025-3-23 12:35:25 | 只看該作者
12#
發(fā)表于 2025-3-23 17:52:58 | 只看該作者
13#
發(fā)表于 2025-3-23 20:11:53 | 只看該作者
14#
發(fā)表于 2025-3-23 22:41:55 | 只看該作者
Spectral Radius of Graphs,he adjacency matrix, which encodes existence of edges joining vertices of a graph. Knowledge of spectral properties of the adjacency matrix is often useful to describe graph properties which are related to the density of the graph’s edges, on either a global or a local level. For example, entries of
15#
發(fā)表于 2025-3-24 04:16:11 | 只看該作者
16#
發(fā)表于 2025-3-24 08:10:49 | 只看該作者
Boundary Value Problems on Finite Networks,h differs from others because the tools we use come from discrete potential theory, in which we have been working for a long period, trying to emulate as much as possible the continuous case. This chapter introduces this way of approximating a problem typical of matrix theory and offers an overview
17#
發(fā)表于 2025-3-24 12:08:59 | 只看該作者
Combinatorial Matrix Theory978-3-319-70953-6Series ISSN 2297-0304 Series E-ISSN 2297-0312
18#
發(fā)表于 2025-3-24 16:34:58 | 只看該作者
https://doi.org/10.1007/978-3-211-85782-3es. The presentation below draws heavily from Kirkland–Neumann [11, Ch. 7], and the interested reader can find further results on the topic in that book. We note that Molitierno [13] also covers some of the material presented in this chapter, and so serves as another source for readers interested in pursuing this subject further.
19#
發(fā)表于 2025-3-24 21:23:47 | 只看該作者
Richard A. Brualdi,ángeles Carmona,Dragan StevanovFocuses on permutation, alternating sign and tournament matrices.Includes an introduction to boundary value problems and related techniques on finite networks.Discusses applications of the group inver
20#
發(fā)表于 2025-3-25 00:25:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 17:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
务川| 东阳市| 镇康县| 邓州市| 腾冲县| 色达县| 南京市| 白河县| 南华县| 宁波市| 土默特右旗| 石家庄市| 监利县| 信丰县| 普兰店市| 洪湖市| 安图县| 井陉县| 庄浪县| 玛沁县| 黄龙县| 镇康县| 临沭县| 晋州市| 全州县| 利辛县| 台安县| 高雄县| 佛坪县| 北宁市| 尼玛县| 将乐县| 台南市| 县级市| 康马县| 潍坊市| 新乐市| 遂平县| 元氏县| 铜鼓县| 拜泉县|