找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial Mathematics VIII; Proceedings of the E Kevin L. McAvaney Conference proceedings 1981 Springer-Verlag Berlin Heidelberg 1981 L

[復(fù)制鏈接]
樓主: incoherent
11#
發(fā)表于 2025-3-23 11:14:45 | 只看該作者
12#
發(fā)表于 2025-3-23 15:07:30 | 只看該作者
Katherine A. Duggan,Zlatan Kri?ano that no two adjacent vertices in H′ are of the same colour. Then any two vertices in G are connected by a hamiltonian path if and only if G contains an edge joining two blue vertices and an edge joining two red vertices. This result enables us to characterize abelian group graphs G in whichany two vertices are connected by a hamiltonian path.
13#
發(fā)表于 2025-3-23 20:35:48 | 只看該作者
14#
發(fā)表于 2025-3-23 22:23:56 | 只看該作者
15#
發(fā)表于 2025-3-24 04:02:36 | 只看該作者
16#
發(fā)表于 2025-3-24 09:32:06 | 只看該作者
17#
發(fā)表于 2025-3-24 14:36:08 | 只看該作者
Connected subgraphs of the graph of multigraphic realisations of a degree sequence, by taking any two vertices of ., say . and ., and finding a path between them which preserves any previously chosen edge of multiplicity . that occurs in both . and .. The construction of this path also establishes best possible upper and lower bounds on the length of the shortest path between any two vertices of ..
18#
發(fā)表于 2025-3-24 18:21:45 | 只看該作者
Enumeration of binary phylogenetic trees,ree is meant one in which every point has degree 1 or 3. The exact and asymptotic numbers of binary phylogenetic trees are determined under the presence or absence of two additional conditions on the labelling. The optional constraints studied require nonempty label sets to be singletons, and that only endpoints be labelled.
19#
發(fā)表于 2025-3-24 21:17:01 | 只看該作者
20#
發(fā)表于 2025-3-25 02:42:02 | 只看該作者
Lecture Notes in Mathematicshttp://image.papertrans.cn/c/image/229933.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 14:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
韶关市| 玛曲县| 宝山区| 永安市| 三门县| 广元市| 洛宁县| 托克托县| 巨野县| 乌海市| 轮台县| 南昌市| 天津市| 永清县| 大方县| 枣强县| 二连浩特市| 门头沟区| 陵川县| 隆回县| 桂林市| 桐乡市| 天全县| 天津市| 嘉善县| 邛崃市| 横山县| 克东县| 应城市| 阿瓦提县| 梅州市| 蕲春县| 姜堰市| 神农架林区| 元氏县| 兴和县| 高青县| 乐至县| 资兴市| 龙泉市| 神木县|