找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial Mathematics VIII; Proceedings of the E Kevin L. McAvaney Conference proceedings 1981 Springer-Verlag Berlin Heidelberg 1981 L

[復制鏈接]
樓主: incoherent
11#
發(fā)表于 2025-3-23 11:14:45 | 只看該作者
12#
發(fā)表于 2025-3-23 15:07:30 | 只看該作者
Katherine A. Duggan,Zlatan Kri?ano that no two adjacent vertices in H′ are of the same colour. Then any two vertices in G are connected by a hamiltonian path if and only if G contains an edge joining two blue vertices and an edge joining two red vertices. This result enables us to characterize abelian group graphs G in whichany two vertices are connected by a hamiltonian path.
13#
發(fā)表于 2025-3-23 20:35:48 | 只看該作者
14#
發(fā)表于 2025-3-23 22:23:56 | 只看該作者
15#
發(fā)表于 2025-3-24 04:02:36 | 只看該作者
16#
發(fā)表于 2025-3-24 09:32:06 | 只看該作者
17#
發(fā)表于 2025-3-24 14:36:08 | 只看該作者
Connected subgraphs of the graph of multigraphic realisations of a degree sequence, by taking any two vertices of ., say . and ., and finding a path between them which preserves any previously chosen edge of multiplicity . that occurs in both . and .. The construction of this path also establishes best possible upper and lower bounds on the length of the shortest path between any two vertices of ..
18#
發(fā)表于 2025-3-24 18:21:45 | 只看該作者
Enumeration of binary phylogenetic trees,ree is meant one in which every point has degree 1 or 3. The exact and asymptotic numbers of binary phylogenetic trees are determined under the presence or absence of two additional conditions on the labelling. The optional constraints studied require nonempty label sets to be singletons, and that only endpoints be labelled.
19#
發(fā)表于 2025-3-24 21:17:01 | 只看該作者
20#
發(fā)表于 2025-3-25 02:42:02 | 只看該作者
Lecture Notes in Mathematicshttp://image.papertrans.cn/c/image/229933.jpg
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 16:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
攀枝花市| 白银市| 同江市| 北安市| 南靖县| 怀柔区| 澎湖县| 普格县| 明星| 乌拉特后旗| 阳泉市| 伊春市| 佛教| 宽城| 井研县| 连城县| 新乐市| 延津县| 抚松县| 沂源县| 新密市| 新巴尔虎左旗| 易门县| 汉川市| 大关县| 郯城县| 西乌珠穆沁旗| 台州市| 成都市| 昌图县| 乌拉特后旗| 青冈县| 阿尔山市| 昌吉市| 盖州市| 崇阳县| 安平县| 松潘县| 遂宁市| 姜堰市| 辉南县|