找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial Mathematics VII; Proceedings of the S Robert W. Robinson,George W. Southern,Walter D. Wa Conference proceedings 1980 Springer

[復制鏈接]
樓主: 審美家
31#
發(fā)表于 2025-3-26 22:15:33 | 只看該作者
Amnesic Effects of Lormetazepamock. The condition . (mod 3) is shown to be both necessary and sufficient for the existence of a BTD on . elements with block size 3 and index 2 in which each element is repeated in exactly one block and each element occurs in a constant number of blocks.
32#
發(fā)表于 2025-3-27 02:48:05 | 只看該作者
Amy S. Korwin,Melissa P. Knauertices. Let F(s) be the set of all finite sequences of non-negative integers which have a unique realisation in the set of all s-uniform hypergraphs, and let F(s.) be the corresponding set for s.-hypergraphs. Hakimi determined F(2), and F(s) can be derived from a result of Koren. Here we determine F(2
33#
發(fā)表于 2025-3-27 06:15:47 | 只看該作者
Melissa P. Knauert,Sairam Parthasarathyyet have identical interpoint distance distributions. In this paper we demonstrate a method for doing this with any set of points or figures and demonstrate the application of the finding to image processing studies.
34#
發(fā)表于 2025-3-27 11:10:37 | 只看該作者
F. Zorick,N. Kribbs,T. Roehrs,T. Rothme degree sequence are . if one can be obtained from the other by an elementary operation called switching. With this notion of adjacency we can regard distinct pseudographs with the same degree sequence as the vertices of a graph, called the . of that sequence. Some results concerning the nature of
35#
發(fā)表于 2025-3-27 14:04:30 | 只看該作者
36#
發(fā)表于 2025-3-27 19:29:58 | 只看該作者
37#
發(fā)表于 2025-3-27 21:57:43 | 只看該作者
38#
發(fā)表于 2025-3-28 03:58:21 | 只看該作者
39#
發(fā)表于 2025-3-28 09:57:30 | 只看該作者
40#
發(fā)表于 2025-3-28 11:55:20 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-8 15:57
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
峨边| 莆田市| 青冈县| 广饶县| 元阳县| 青海省| 灵武市| 巫山县| 年辖:市辖区| 阜新| 胶南市| 邵武市| 安塞县| 莱阳市| 信宜市| 漳平市| 元阳县| 斗六市| 盐城市| 万山特区| 尉氏县| 孝义市| 黔南| 霍城县| 泰来县| 瑞金市| 全椒县| 揭阳市| 毕节市| 德庆县| 福建省| 万全县| 盖州市| 崇左市| 象州县| 孟连| 平江县| 晋江市| 密云县| 临西县| 外汇|