找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial Enumeration of Groups, Graphs, and Chemical Compounds; G. Pólya,R. C. Read Textbook 1987 Springer-Verlag New York Inc. 1987

[復(fù)制鏈接]
樓主: Maculate
21#
發(fā)表于 2025-3-25 07:18:07 | 只看該作者
22#
發(fā)表于 2025-3-25 10:17:06 | 只看該作者
23#
發(fā)表于 2025-3-25 14:33:07 | 只看該作者
24#
發(fā)表于 2025-3-25 18:19:29 | 只看該作者
25#
發(fā)表于 2025-3-25 21:56:23 | 只看該作者
Introduction,e number of certain trees., Some of his problems lend themselves to chemical interpretation: the number of trees in question is equal to the number of certain (theoretically possible) chemical compounds.
26#
發(fā)表于 2025-3-26 03:09:53 | 只看該作者
Groups,d balls discussed in Sec. 2 have to be replaced by more complex objects, which we will call figures; on the other hand, the special permutation group of the octahedron rotations will have to be replaced by a more general permutation group.
27#
發(fā)表于 2025-3-26 04:58:24 | 只看該作者
Graphs,xposition I provide more than the bare essentials. I begin by repeating some known definitions in graph theory. Some problems touched upon in the Introduction are going to be presented “officially” later on. I will adhere as much as possible to the terminology used by D. K?nig in his elegant text..
28#
發(fā)表于 2025-3-26 11:54:30 | 只看該作者
Chemical Compounds,al) formula. Conditions I and II in Sec. 29 become meaningful in chemical terms. Every edge terminating in two endpoints means that there are no free valences. The connectedness of a graph indicates that all atoms are tied together into a molecule. The number of edges ending in the same vertex corre
29#
發(fā)表于 2025-3-26 14:19:56 | 只看該作者
30#
發(fā)表于 2025-3-26 18:53:56 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 00:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吴旗县| 磐安县| 宁晋县| 博野县| 德江县| 大足县| 视频| 桓仁| 建瓯市| 吴堡县| 南充市| 惠安县| 轮台县| 灵宝市| 电白县| 成武县| 都昌县| 阜新市| 岢岚县| 行唐县| 青海省| 通辽市| 杂多县| 福安市| 云和县| 河曲县| 专栏| 伊金霍洛旗| 宣恩县| 齐河县| 西平县| 苏州市| 花莲县| 大厂| 麟游县| 闽清县| 雷波县| 遂昌县| 纳雍县| 和静县| 邻水|