找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial Algorithms; 23rd International W S. Arumugam,W. F. Smyth Conference proceedings 2012 Springer-Verlag Berlin Heidelberg 2012 a

[復(fù)制鏈接]
樓主: 萬(wàn)能
11#
發(fā)表于 2025-3-23 10:31:00 | 只看該作者
12#
發(fā)表于 2025-3-23 16:45:01 | 只看該作者
On Graph Identification Problems and the Special Case of Identifying Vertices Using Paths,identifying path cover of size at most .. We also study the computational complexity of the associated optimization problem, in particular we show that when the length of the paths is asked to be of a fixed value, the problem is APX-complete.
13#
發(fā)表于 2025-3-23 18:35:36 | 只看該作者
14#
發(fā)表于 2025-3-23 23:45:35 | 只看該作者
Saving on Phases: Parameterized Approximation for Total Vertex Cover,rier can be overcome when we are only interested in approximate solutions. More specifically, we prove that a factor-1.5 approximative solution for . can be found in time ., where . is some bound on the optimum solution.
15#
發(fā)表于 2025-3-24 03:18:55 | 只看該作者
Approaches and Mathematical Models for Robust Solutions to Optimization Problems with Stochastic Prtion problem with a given problem data instance would become non-optimal and/or infeasible when applied to another data instance with even slight perturbation. We argue the fallacy of using solutions developed based on the mean values of data for real life problems having stochastic data.
16#
發(fā)表于 2025-3-24 08:49:34 | 只看該作者
17#
發(fā)表于 2025-3-24 13:04:45 | 只看該作者
18#
發(fā)表于 2025-3-24 15:32:07 | 只看該作者
https://doi.org/10.1007/978-3-642-50118-0at its unit balls tile the plane, as in the case of the ..-metric. We may view the hexagonal metric as an approximation of the Euclidean metric, and it arises in computational geometry. We show that the random process with the hexagonal metric does not lead to a unique isomorphism type.
19#
發(fā)表于 2025-3-24 22:17:04 | 只看該作者
20#
發(fā)表于 2025-3-24 23:34:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 23:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
屯昌县| 抚顺县| 孟津县| 吉木萨尔县| 兴海县| 新津县| 金秀| 红桥区| 台南县| 大埔区| 铜陵市| 介休市| 巴楚县| 青龙| 望江县| 衢州市| 科技| 普陀区| 抚顺市| 黄浦区| 赣榆县| 北京市| 黎城县| 梓潼县| 屏东市| 台北县| 阳朔县| 章丘市| 盐源县| 敖汉旗| 陆丰市| 陈巴尔虎旗| 海原县| 从江县| 商水县| 遂平县| 玛纳斯县| 曲阳县| 阿拉尔市| 桦川县| 淮滨县|