找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial Algorithms; 30th International W Charles J. Colbourn,Roberto Grossi,Nadia Pisanti Conference proceedings 2019 Springer Nature

[復(fù)制鏈接]
樓主: irritants
11#
發(fā)表于 2025-3-23 13:25:21 | 只看該作者
Power Edge Set and Zero Forcing Set Remain Difficult in Cubic Graphs,exploiting their structural properties to improve and refine previous results. We also give hardness results for parameterized precolored versions of these problems, and a polynomial-time algorithm for . in proper interval graphs.
12#
發(fā)表于 2025-3-23 14:17:59 | 只看該作者
13#
發(fā)表于 2025-3-23 20:03:56 | 只看該作者
14#
發(fā)表于 2025-3-24 02:01:04 | 只看該作者
15#
發(fā)表于 2025-3-24 05:29:48 | 只看該作者
16#
發(fā)表于 2025-3-24 08:34:20 | 只看該作者
17#
發(fā)表于 2025-3-24 10:47:15 | 只看該作者
18#
發(fā)表于 2025-3-24 16:06:28 | 只看該作者
The Hull Number in the Convexity of Induced Paths of Order 3,ning .. If the .-convex hull of . is .(.), then . is a .. The minimum size of a .-hull set is the .. In this paper, we show that the problem of deciding whether the .-hull number of a chordal graph is at most . is .-complete and present a linear-time algorithm to determine this parameter and provide
19#
發(fā)表于 2025-3-24 21:24:07 | 只看該作者
Supermagic Graphs with Many Odd Degrees, is equal to the same number ., called the ...Recently, Ková? et al. affirmatively answered a question by Madaras about existence of supermagic graphs with arbitrarily many different degrees. Their construction provided graphs with all degrees even. Therefore, they asked if there exists a supermagic
20#
發(fā)表于 2025-3-24 23:12:00 | 只看該作者
Lecture Notes in Computer Sciencehttp://image.papertrans.cn/c/image/229881.jpg
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 05:06
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
濮阳市| 偏关县| 胶州市| 鄂托克旗| 嘉兴市| 渑池县| 桓台县| 黄龙县| 德兴市| 宜兰县| 东乌珠穆沁旗| 丰县| 得荣县| 海城市| 桐梓县| 濮阳市| 屏南县| 太白县| 丰都县| 乌拉特中旗| 苏尼特右旗| 浙江省| 沾益县| 达拉特旗| 大庆市| 瑞丽市| 五寨县| 广河县| 遵义市| 洪江市| 科技| 杭州市| 高雄县| 南安市| 乌苏市| 高尔夫| 北宁市| 仲巴县| 天镇县| 通河县| 富裕县|