找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial Algorithms; 21st International W Costas S. Iliopoulos,William F. Smyth Conference proceedings 2011 Springer Berlin Heidelberg

[復制鏈接]
樓主: 烈酒
11#
發(fā)表于 2025-3-23 13:24:49 | 只看該作者
12#
發(fā)表于 2025-3-23 13:52:07 | 只看該作者
Single Parameter FPT-Algorithms for Non-trivial Games, this paper provides positive results regarding Nash equilibria. We show that consideration of sparse games or limitations of the support result in fixed-parameter algorithms with respect to one parameter only for the .. problem. That is, we show that a sample uniform Nash equilibrium in .-sparse im
13#
發(fā)表于 2025-3-23 18:13:22 | 只看該作者
The Complexity Status of Problems Related to Sparsest Cuts,(.)/(|.||.???.|). This problem is NP-hard. The proof can be found in [16]. In the case of unit capacities (i. e. if .(.)?=?1 for every .?∈?.) the problem is to minimize |.(.,.???.)|/(|.||.???.|) over all subsets .???.. While this variant of the sparsest cut problem is often assumed to be NP-hard, th
14#
發(fā)表于 2025-3-23 22:23:32 | 只看該作者
On Approximation Complexity of Metric Dimension Problem,imension problem is not approximable within . for any ., unless ., and we give an approximation algorithm which matches the lower bound. Even for bounded degree instances it is APX-hard to determine (compute) the exact value of the metric dimension which we prove by constructing an approximation pre
15#
發(fā)表于 2025-3-24 02:53:50 | 只看該作者
16#
發(fā)表于 2025-3-24 08:54:20 | 只看該作者
17#
發(fā)表于 2025-3-24 14:05:41 | 只看該作者
Computing Role Assignments of Proper Interval Graphs in Polynomial Time,morphism is also called an .-role assignment of .. Role assignments have applications in distributed computing, social network theory, and topological graph theory. The . problem has as input a pair of graphs (.,.) and asks whether . has an .-role assignment. This problem is .-complete already on in
18#
發(fā)表于 2025-3-24 16:21:42 | 只看該作者
19#
發(fā)表于 2025-3-24 21:19:41 | 只看該作者
20#
發(fā)表于 2025-3-25 01:40:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 06:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
东阳市| 丽水市| 裕民县| 烟台市| 古交市| 岱山县| 吉首市| 万盛区| 梁平县| 宝清县| 北京市| 香格里拉县| 牟定县| 安达市| 大埔县| 岢岚县| 商河县| 嵩明县| 古交市| 体育| 长宁区| 海南省| 安溪县| 申扎县| 共和县| 定兴县| 新密市| 平凉市| 三都| 天长市| 道真| 富宁县| 鄂温| 屏东县| 乡宁县| 靖宇县| 莱芜市| 章丘市| 永城市| 额尔古纳市| 临泽县|