找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial Algebraic Geometry; Selected Papers From Gregory G. Smith,Bernd Sturmfels Book 2017 Springer Science+Business Media LLC 2017

[復制鏈接]
樓主: autoantibodies
11#
發(fā)表于 2025-3-23 11:35:51 | 只看該作者
,Les Pensées de Pascal au XIXe siècle,e . has 28 effective theta characteristics—the 28 bitangents to a canonical embedding—while . has exactly seven effective tropical theta characteristics, as shown by Zharkov. We prove that the 28 effective theta characteristics of a ..-curve specialize to the theta characteristics of its minimal ske
12#
發(fā)表于 2025-3-23 15:05:32 | 只看該作者
Mark-Oliver Casper,Giuseppe Flavio Artese of all lines which intersect .. We compute the singular locus of this hypersurface, which contains the congruence of all secants to .. A surface . in . defines the Hurwitz hypersurface in . of all lines which are tangent to .. We show that its singular locus has two components for general enough .:
13#
發(fā)表于 2025-3-23 20:50:27 | 只看該作者
Julian Kiverstein,Michael Kirchhoff, conjecturally, determine . as a subscheme. Using ., we prove that these equations generate the ideal for 5 ≤ . ≤ 8. For . ≤ 6, we also give a cohomological proof that these polynomials realize . as a subvariety of . embedded by the complete log canonical linear system.
14#
發(fā)表于 2025-3-23 23:48:09 | 只看該作者
Mark-Oliver Casper,Giuseppe Flavio Arteserms of these generators generate the initial algebra of this Cox ring. Sturmfels and Xu provide a classification in the case of degree 4 del Pezzo surfaces by subdividing the tropical Grassmannian .. After providing the necessary background on Cox–Nagata rings and Khovanskii bases, we review the cla
15#
發(fā)表于 2025-3-24 05:30:41 | 只看該作者
Stefan Ultes,Hüseyin Dikme,Wolfgang Minkermpute the tropical homology, thus recovering a special case of the result of [.], and establish a connection between the dimension of the tropical homology groups and the Hodge numbers of the corresponding algebraic Enriques surface.
16#
發(fā)表于 2025-3-24 07:59:54 | 只看該作者
https://doi.org/10.1007/978-3-319-21834-2the Specht polytope, which also keeps track of convexity relations. We establish basic facts about the Specht polytope: the symmetric group acts transitively on its vertices and irreducibly on its ambient real vector space. A similar construction builds a matroid and polytope for a tensor product of
17#
發(fā)表于 2025-3-24 11:47:05 | 只看該作者
Simon Receveur,David Scheler,Tim Fingscheidt we compare toric degenerations arising from string polytopes and the FFLV polytope with those obtained from the tropicalization of the flag varieties. We also present a general procedure to find toric degenerations in the cases where the initial ideal arising from a cone of the tropicalization of a
18#
發(fā)表于 2025-3-24 17:02:33 | 只看該作者
19#
發(fā)表于 2025-3-24 20:04:40 | 只看該作者
Peggy Levitt,Kristen Lucken,Melissa Barnettch graph ., the associated canonical linear system | .. | has the structure of a polyhedral complex. In this article, we propose a tropical analogue of the Hodge bundle on . and study its basic combinatorial properties. Our construction is illustrated with explicit computations and examples.
20#
發(fā)表于 2025-3-25 02:09:10 | 只看該作者
Life Course Research and Social Policies)homologies. As motivation, we summarize some results from toric and tropical geometry linking cellular sheaf cohomologies to cohomologies of algebraic varieties. We then give an overview of the structure of the extension . for .. Finally, we illustrate the usage of the extension with examples from
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 11:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
博乐市| 丹东市| 手游| 梅河口市| 固原市| 三江| 武胜县| 佳木斯市| 宁河县| 建平县| 佛坪县| 山东省| 武山县| 海丰县| 铜山县| 康乐县| 周宁县| 吴堡县| 理塘县| 河间市| 漯河市| 赞皇县| 祁门县| 武隆县| 固安县| 苍南县| 神农架林区| 内黄县| 江孜县| 保亭| 阜新| 丹阳市| 文昌市| 嘉黎县| 青铜峡市| 大方县| 德令哈市| 怀柔区| 冀州市| 金秀| 延川县|