找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Combinatorial Algebraic Geometry; Levico Terme, Italy Aldo Conca,Sandra Di Rocco,Filippo Viviani Book 2014 Springer International Publishi

[復制鏈接]
樓主: Jefferson
11#
發(fā)表于 2025-3-23 12:21:42 | 只看該作者
12#
發(fā)表于 2025-3-23 15:38:22 | 只看該作者
13#
發(fā)表于 2025-3-23 21:20:00 | 只看該作者
14#
發(fā)表于 2025-3-24 01:19:52 | 只看該作者
Combinatorial Algebraic Geometry978-3-319-04870-3Series ISSN 0075-8434 Series E-ISSN 1617-9692
15#
發(fā)表于 2025-3-24 04:50:59 | 只看該作者
16#
發(fā)表于 2025-3-24 09:22:30 | 只看該作者
Ludivine Sinzelle,Nicolas Pollet. Their geometry and combinatorics have a fruitful interplay leading to fundamental insight in both directions. These notes will illustrate geometrical phenomena, in algebraic geometry and neighboring fields, which are characterized by a Cayley structure. Examples are projective duality of toric varieties and polyhedral adjunction theory.
17#
發(fā)表于 2025-3-24 12:32:40 | 只看該作者
Homologous Recombination in Mammalse. The aim of these notes is to present an introduction to this important class of manifolds, trying to survey the several different perspectives from which Hermitian symmetric manifolds can be studied.
18#
發(fā)表于 2025-3-24 18:47:32 | 只看該作者
19#
發(fā)表于 2025-3-24 22:14:31 | 只看該作者
Lilya Kopertekh,Joachim Schiemanno large, in fact, that subvarieties stable under those symmetry groups are defined by finitely many orbits of equations—whence the title .. It is not the purpose of these notes to give a systematic, exhaustive treatment of such varieties, but rather to discuss a few “personal favourites”: exciting e
20#
發(fā)表于 2025-3-25 02:03:41 | 只看該作者
Gene Site-Specific Insertion in Plantslosure is a topological invariant of that embedded projective variety, known as its maximum likelihood degree. We present an introduction to this theory and its statistical motivations. Many favorite objects from combinatorial algebraic geometry are featured: toric varieties, .-discriminants, hyperp
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 14:14
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
舞钢市| 九江县| 榕江县| 鹿泉市| 天峨县| 安溪县| 湛江市| 齐齐哈尔市| 三台县| 安阳市| 伊金霍洛旗| 汨罗市| 惠来县| 牡丹江市| 丰顺县| 无锡市| 南江县| 江都市| 林西县| 永宁县| 台中县| 巫山县| 东港市| 达日县| 三门峡市| 明水县| 家居| 平远县| 思南县| 洪洞县| 光山县| 天柱县| 乐东| 姜堰市| 黎川县| 临颍县| 错那县| 屏东县| 岱山县| 安陆市| 大埔县|